书签 分享 收藏 举报 版权申诉 / 46
上传文档赚钱

类型2019届高考数学一轮复习第九章解析几何9.2点与直线两条直线的位置关系课件(文科)新人教A版.ppt

  • 上传人(卖家):flying
  • 文档编号:31673
  • 上传时间:2018-08-12
  • 格式:PPT
  • 页数:46
  • 大小:1.78MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019届高考数学一轮复习第九章解析几何9.2点与直线两条直线的位置关系课件(文科)新人教A版.ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 高考 数学 一轮 复习 第九 解析几何 9.2 直线 位置 关系 课件 文科 新人 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、9.2点与直线、两条直线的 位置关系,-2-,知识梳理,双基自测,2,3,1,自测点评,1.两条直线的位置关系平面内两条直线的位置关系包括三种情况.(1)两条直线平行对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1l2?k1=k2,且b1b2.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1l2?A1B2-A2B1=0,且B1C2-B2C10(或A1C2-A2C10).,平行、相交、重合,-3-,知识梳理,双基自测,2,3,1,自测点评,(2)两条直线垂直对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1l2?k1k2=-1.对于直线l1:A1

    2、x+B1y+C1=0,l2:A2x+B2y+C2=0,l1l2?.,A1A2+B1B2=0,-4-,知识梳理,双基自测,自测点评,2,3,1,2.两条直线的交点,唯一解,无解,无穷多解,-5-,知识梳理,双基自测,自测点评,2,3,1,3.三种距离,2,-6-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”.(1)如果直线l1与直线l2互相平行,那么这两条直线的斜率相等.()(2)如果直线l1与直线l2互相垂直,那么它们的斜率之积一定等于-1.()(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()(5)已知直线l1:A1x+B1y+C1=0

    3、,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1l2,则A1A2+B1B2=0.(),答案,-7-,知识梳理,双基自测,自测点评,2,3,4,1,5,2.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0,答案,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,3.(2017福建莆田一模)已知a为实数,直线l1:ax+y=1,l2:x+ay=2a,则“a=-1”是“l1l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,答案,

    4、解析,-9-,知识梳理,双基自测,自测点评,2,3,4,1,5,4.(2017广东揭阳一模)若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4,答案,解析,-10-,知识梳理,双基自测,自测点评,2,3,4,1,5,5.若直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a=.,答案,解析,-11-,知识梳理,双基自测,自测点评,1.对于直线l1与直线l2相互平行(垂直)的条件一定要注意其适用范围.2.求解点到直线的距离和两平行线间的距离时,注意直线方程要用一般式.,-12-,考点1,考点2,考点3,

    5、考点4,例1已知直线l1:ax+2y+6=0和l2:x+(a-1)y+a2-1=0.(1)试判断l1与l2是否平行;(2)当l1l2时,求a的值.思考解含参数的直线方程有关问题时如何分类讨论?,-13-,考点1,考点2,考点3,考点4,解 (1)(方法一)当a=1时,直线l1的方程为x+2y+6=0,直线l2的方程为x=0,l1不平行于l2;当a=0时,直线l1的方程为y=-3,直线l2的方程为x-y-1=0,l1不平行于l2;综上可知,当a=-1时,l1l2,否则l1与l2不平行.,-14-,考点1,考点2,考点3,考点4,综上可知,当a=-1时,l1l2,否则l1与l2不平行.(方法二)由

    6、A1B2-A2B1=0,得a(a-1)-12=0;由A1C2-A2C10,得a(a2-1)-160.故当a=-1时,l1l2,否则l1与l2不平行.,-15-,考点1,考点2,考点3,考点4,(2)(方法一)当a=1时,直线l1的方程为x+2y+6=0,直线l2的方程为x=0,l1与l2不垂直,故a=1不成立.当a=0时,直线l1的方程为y=-3,直线l2的方程为x-y-1=0,l1不垂直于l2.,-16-,考点1,考点2,考点3,考点4,解题心得1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能

    7、同时为零这一隐含条件.2.在判断两条直线的平行、垂直时,也可直接利用直线方程的系数之间的关系得出结论.,-17-,考点1,考点2,考点3,考点4,对点训练1(1)已知过点A(-2,m)和点B(m,4)的直线为l1,直线l2为2x+y-1=0,直线l3为x+ny+1=0.若l1l2,l2l3,则实数m+n的值为.(2)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.l1l2,且l1过点(-3,-1);l1l2,且坐标原点到这两条直线的距离相等.,-18-,考点1,考点2,考点3,考点4,-19-,考点1,考点2,考点3,考点4,(2)解 由已知可

    8、得l2的斜率存在,故k2=1-a.若k2=0,则1-a=0,即a=1.l1l2,直线l1的斜率k1必不存在,即b=0.又l1过点(-3,-1),此种情况不存在,k20,即k1,k2都存在.又l1过点(-3,-1),-3a+b+4=0.(*)联立(*)(*),解得a=2,b=2.,-20-,考点1,考点2,考点3,考点4,-21-,考点1,考点2,考点3,考点4,例2求经过两条直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.思考求两条直线的交点坐标的一般思路是什么?,-22-,考点1,考点2,考点3,考点4,法二:直线l过直线l1和l

    9、2的交点,可设直线l的方程为x-2y+4+(x+y-2)=0,即(1+)x+(-2)y+4-2=0.l与l3垂直,3(1+)+(-4)(-2)=0,=11,直线l的方程为12x+9y-18=0,即4x+3y-6=0.,-23-,考点1,考点2,考点3,考点4,解题心得1.求两条直线的交点坐标,一般思路就是解由这两条直线方程组成的方程组,以方程组的解为坐标的点即为交点.2.常见的三大直线系方程:(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(mR,且mC).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(mR).(3)过直线l1:A1x+B1y+C1=0与

    10、l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+(A2x+B2y+C2)=0(R),但不包括l2.,-24-,考点1,考点2,考点3,考点4,对点训练2(1)若三条直线2x+3y+8=0,x-y-1=0和x+by=0相交于一点,则b=()(2)过两条直线2x-y-5=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程为.,答案: ( 1)B(2)3x+y=0,-25-,考点1,考点2,考点3,考点4,-26-,考点1,考点2,考点3,考点4,例3(2017四川绵阳一诊)若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上的任意一点,则|PQ|的最小值

    11、为(),思考利用距离公式应注意的问题有哪些?,答案,解析,-27-,考点1,考点2,考点3,考点4,解题心得利用距离公式应注意:(1)两平行线间的距离公式要求两条直线方程中x,y的系数相等;(2)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.,-28-,考点1,考点2,考点3,考点4,对点训练3已知点P(2,-1).(1)求过点P且与原点的距离为2的直线l的方程.(2)求过点P且与原点的距离最大的直线l的方程,最大距离是多少?(3)是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.,-29-,考点1,考点2,考点3,考点

    12、4,解 (1)过点P的直线l与原点的距离为2,而点P的坐标为(2,-1),显然,过P(2,-1)且垂直于x轴的直线满足条件,此时l的斜率不存在,其方程为x=2.若斜率存在,设l的方程为y+1=k(x-2),即kx-y-2k-1=0.此时l的方程为3x-4y-10=0.综上,可得直线l的方程为x=2或3x-4y-10=0.,-30-,考点1,考点2,考点3,考点4,(2)作图可得过点P与原点O的距离最大的直线是过点P且与PO垂直的直线,如图.由直线方程的点斜式得y+1=2(x-2),即2x-y-5=0.所以直线2x-y-5=0是过点P且与原点O的距离最大的直线,最大距离为(3)由(2)可知,过点

    13、P不存在到原点的距离超过 的直线,因此不存在过点P且到原点的距离为6的直线.,-31-,考点1,考点2,考点3,考点4,考向一点关于点的对称问题例4过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为.思考有关点关于点的对称问题该如何解?,答案,解析,-32-,考点1,考点2,考点3,考点4,考向二点关于直线的对称问题例5已知直线l:2x-3y+1=0,点A(-1,-2),则点A关于直线l的对称点A的坐标为.思考有关点关于直线的对称问题该如何解?,答案,解析,-33-,考点1,考点2,考点3,考点4,考向三直线关于直线的对称

    14、问题例6已知直线l:2x-3y+1=0,求直线m:3x-2y-6=0关于直线l的对称直线m的方程.思考有关直线关于直线的对称问题该如何解?,-34-,考点1,考点2,考点3,考点4,解 在直线m上任取一点,如M(2,0),则M(2,0)关于直线l的对称点M必在直线m上.设对称点M(a,b),则又m经过点N(4,3),所以由两点式得直线m的方程为9x-46y+102=0.,-35-,考点1,考点2,考点3,考点4,解题心得1.点关于点的对称:求点P关于点M(a,b)的对称点Q的问题,主要依据M是线段PQ的中点,即xP+xQ=2a,yP+yQ=2b.2.直线关于点的对称:求直线l关于点M(m,n)

    15、的对称直线l的问题,主要依据l上的任一点T(x,y)关于M(m,n)的对称点T(2m-x,2n-y)必在l上.3.点关于直线的对称:求已知点A(m,n)关于已知直线l:y=kx+b的对称点A(x0,y0)的坐标,一般方法是依据l是线段AA的垂直平分线,列出关于x0,y0的方程组,由“垂直”得一方程,由“平分”得一方程.4.直线关于直线的对称:此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.,-36-,考点1,考点2,考点3,考点4,对点训练4(1)(2017广西南宁模拟)直线x-2y+1=0关于直线x=1对称的直线方程是()A.x+2y

    16、-1=0B.2x+y-1=0C.2x+y-3=0D.x+2y-3=0(2)在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图).若光线QR经过ABC的重心,则AP等于.(3)光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程.,答案,-37-,考点1,考点2,考点3,考点4,解析:(1)设所求直线上任一点(x,y),则它关于直线x=1的对称点(2-x,y)在直线x-2y+1=0上,即2-x-2y+1=0,化简得x+2y-3=0.(2)以AB,AC所在直线分别为x轴,y轴建立

    17、如图所示的平面直角坐标系,则A(0,0),B(4,0),C(0,4),-38-,考点1,考点2,考点3,考点4,故反射点M的坐标为(-1,2).又取直线x-2y+5=0上一点P(-5,0),设点P关于直线l的对称点P(x0,y0),-39-,考点1,考点2,考点3,考点4,根据直线的两点式方程可得反射光线所在直线的方程为29x-2y+33=0.,-40-,考点1,考点2,考点3,考点4,(方法二)设直线x-2y+5=0上任意一点P(x0,y0)关于直线l的对称点为P(x,y),代入方程x-2y+5=0中,化简得29x-2y+33=0,故反射光线所在的直线方程为29x-2y+33=0.,-41-,考点1,考点2,考点3,考点4,1.对于两条直线的位置

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019届高考数学一轮复习第九章解析几何9.2点与直线两条直线的位置关系课件(文科)新人教A版.ppt
    链接地址:https://www.163wenku.com/p-31673.html
    flying
         内容提供者     
    相关资源 更多
  • 2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx
  • 2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库