高考数学复习专题24《利用导数解决双变量问题》讲义及答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题24《利用导数解决双变量问题》讲义及答案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用导数解决双变量问题 高考 数学 复习 专题 24 利用 导数 解决 变量 问题 讲义 答案 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题24 利用导数解决双变量问题一、单选题 1设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD2已知函数,且有两个极值点,其中,则的最小值为( )ABCD3已知函数,若,其中,则的最大值为( )AB CD4设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD5已知函数,实数,满足若,使得成立,则的最大值为( )A3B4C5D二、解答题6已知函数()求函数的图象在点处的切线方程;()若存在两个不相等的数,满足,求证:7已知函数,为的导函数.(1)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间和极值;(2)当时,求证:对任意的且,有.8已知函数.其中为常数.(
2、1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:.9已知函数,设(1)若,求的最大值;(2)若有两个不同的零点,求证:.10已知函数,其中.(1)若在上存在极值点,求a的取值范围;(2)设,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11已知函数,其中.(1)若函数的图象与直线在第一象限有交点,求的取值范围.(2)当时,若有两个零点,求证:.12已知函数.(1)若在单调递增,求a的值;(2)当时,设函数的最小值为,求函数的值域.13已知函数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:.14
3、已知函数(1)当时,求函数的单调区间;(2)当时,函数有三个不同的零点,求证:15已知函数,其中为自然对数的底数.(1)证明:在上单调递减,上单调递增;(2)设,函数,如果总存在,对任意,都成立,求实数的取值范围.16已知函数,其中,为常数(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:17已知函数,既存在极大值,又存在极小值.(1)求实数的取值范围;(2)当时,分别为的极大值点和极小值点.且,求实数的取值范围.18已知函数有两个零点,.(1)求实数的取值范围;(2)求证:.19已知函数,(1)若函数在上单调递增,求实数的取值范围;(2)当
4、时,若与的图象有两个交点,试比较与的大小(取为2.8,取为0.7,取为1.4)20已知函数()当时,求证:()设,若,使得成立,求实数a的取值范围21设函数(1)当时,试讨论函数的单调性;(2)设,记,当时,若函数与函数有两个不同交点,设线段的中点为,试问是否为的根?说明理由22已知函数(1)若函数在区间内是单调递增函数,求实数a的取值范围;(2)若函数有两个极值点,且,求证:(注:为自然对数的底数)23已知函数(1)当时,求函数的单调区间;(2)若,函数的最小值为,求的值域.24已知函数.(1)若在定义域单调递增,求a的取值范围;(2)设,m,n分别是的极大值和极小值,且,求S的取值范围.2
5、5已知函数. (1)求函数的单调递增区间; (2)任取,函数对任意,恒有成立,求实数的取值范围.专题24 利用导数解决双变量问题一、单选题 1设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD【答案】A【分析】由题意只需,对函数求导,判断单调性求出最小值,对函数讨论对称轴和区间的关系,得到函数最小值,利用即可得到实数的取值范围.【详解】若对于,使成立,只需,因为,所以,当时,所以在上是减函数,所以函数取得最小值因为,当时,在上单调递增,函数取得最小值,需,不成立;当时,在上单调递减,函数取得最小值,需,解得,此时;当时,在上单调递减,在上单调递增,函数取得最小值,需,解得或,此时无
6、解;综上,实数的取值范围是,故选:A【点睛】本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.2已知函数,且有两个极值点,其中,则的最小值为( )ABCD【答案】A【分析】的两个极值点是的两个根,根据韦达定理,确定的关系,用表示出,用表示出,求该函数的最小值即可.【详解】解:的定义域,令,则必有两根,所以,当时,递减,所以的最小值为故选:A.【点睛】求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.3已知函数,若,其中,则的最大值为( )AB CD【答案】A【分析】由题意转化条
7、件,通过导数判断函数的单调性,以及画出函数的图象,数形结合可知,进而可得,最后通过设函数,利用导数求函数的最大值.【详解】由题意, ,则,当时,单调递减,当时,单调递增,又时,时,作函数的图象如下:由图可知,当时,有唯一解,故,且,设,则,令,解得,易得当时,函数单调递增,当时,函数单调递减,故,即的最大值为.故选:A.【点睛】本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断.4设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD【答案】A【分析】根据对于,使成立,用导数法求得的最小值,用二次函数的性质求得的最小值,再
8、解不等式即可.【详解】因为,所以,当时,所以在上是增函数,所以函数取得最小值.因为,当时,取得最小值,因为对于,使成立,所以,不成立;当时,取得最小值,因为对于,使成立,所以,解得,此时;当时,取得最小值,因为对于,使成立,所以,解得,此时;综上:实数的取值范围是.故选:A【点睛】本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.5已知函数,实数,满足若,使得成立,则的最大值为( )A3B4C5D【答案】A【分析】首先化简函数,和,并判断函数的单调性,由条件转化为子集关系,从而确定值.【详解】, ,当时,解得:,当时,解得:,所以在
9、的单调递增区间是,单调递减区间是,当时取得最小值, ,函数在单调递增,所以,令,解得:或,由条件可知的值域是值域的子集,所以的最大值是,的最小值是,故的最大值是.故选:A【点睛】本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型.二、解答题6已知函数()求函数的图象在点处的切线方程;()若存在两个不相等的数,满足,求证:【答案】();()证明见解析.【分析】()首先求函数的导数,利用导数的几何意义,求函数的图象在点处的切线方程;()首先确定函数零点的区间,构造函数,利用导数判断函数的单调性,并得到在上恒成立,并利用单调性
10、,变形得到.【详解】(),所以的图象在点处的切线方程为()令,解得,当时,在上单调递增;当时, , 在上单调递减所以为的极大值点,不妨设,由题可知令,因为,所以,所以单调递减又,所以在上恒成立,即在上恒成立所以,因为,又在上单调递增,所以,所以【点睛】思路点睛:本题是典型的极值点偏移问题,需先分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得与在同一个单调区间内,进而利用函数的单调性分析.7已知函数,为的导函数.(1)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间和极值;(2)当时,求证:对任意的且,有.【答案】(1)(i);(ii)递减区间为
11、,递增区间为;极小值为,无极大值;(2)证明见解析.【分析】(1)(i)确定函数,求出,然后利用导数的几何意义求出切线方程即可;(ii)确定函数,求出,利用导数研究函数的单调性与极值即可;(2)求出,对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立.【详解】(1)(i)当时,故.可得,所以曲线在点处的切线方程为,即.(ii)依题意,从而求导可得,整理可得.令,解得.当变化时,的变化情况如下表:10 极小值所以,函数的单调递减区间为,单调递增区间为;的极小值为,无极大值. (2)证明:由,得.对任意的,且,令,则. 令,.当时,由此可得在
12、单调递增,所以当时,即,因为,所以. 由(1)(ii)可知,当时,即,故. 由可得.所以,当时,对任意的,且,有.【点睛】结论点睛:本题考查不等式的恒成立问题,可按如下规则转化:一般地,已知函数,(1)若,总有成立,故;(2)若,有成立,故;(3)若,有成立,故;(4)若,有,则的值域是值域的子集.8已知函数.其中为常数.(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:.【答案】(1);(2)证明见解析.【分析】(1)求出导函数,分类讨论确定的正负,得的单调性,从而得极值点个数,由此可得结论;(2)结合(1)求得函数有两个零点时的范围,设,
13、则,引入函数,由导数确定它是减函数,得,然后利用,再结合的单调性得出证明【详解】(1),当时,在上单调递增,不符合题意,当时,令,得,当时,单调递减,当时,单调递增,所以此时只有一个极值点(2)由(1)知当时,在上单调递增,函数至多有一个零点,不符合题意,当时,令,得,当时,单调递减,当时,单调递增,故当时,函数取得最小值,当时,函数无零点,不合题意,当时,函数仅有一个零点,不合题意,当时,又,所以在上只有一个零点,令,则,故当时,单调递增,当时,单调递减,所以,即,所以,所以,又,所以在上只有一个零点.所以满足题意.不妨设,则,令,则,当时,所以在上单调递减,所以当时,即,因为,所以,所以,
14、又,且在上单调递增,所以,故得证.【点睛】关键点点睛:本题考查用导数研究函数的极值点、零点,证明不等式难点是不等式的证明,首先由零点个数得出参数范围,在不妨设,则,后关键是引入函数,同样用导数得出它的单调性,目的是证得,然后利用这个不等关系变形的单调性得结论9已知函数,设(1)若,求的最大值;(2)若有两个不同的零点,求证:.【答案】(1)最大值为;(2)证明见解析.【分析】(1)首先求出函数的导函数,再判断的符号,即可得到函数的单调区间,从而求出函数的最大值;(2)由题知,即,要证,即可,令,则只需证构造函数,利用导数说明其单调性即可得证;【详解】解:(1)解:当时,所以注意,且当时,单调递
15、增;当时,单调递增减所以的最大值为(2)证明:由题知,即,可得不妨,则上式进一步等价于令,则只需证设,所以在上单调递增,从而,即,故原不等式得证【点睛】本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想对数学思维的要求比较高,有一定的探索性综合性强,属于难题10已知函数,其中.(1)若在上存在极值点,求a的取值范围;(2)设,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由【答案】(1),;(2)(a)存在最大值,且最大值为【分析】(1)求出函数的导数,将题意转换为在上有解,由在上递增,得,求出的范围即可;(2)求
16、出函数的导数,得到,求出(a),根据函数的单调性求出(a)的最大值即可【详解】解:(1),由题意得,在上有根(不为重根),即在上有解,由在上递增,得,检验,时,在上存在极值点,;(2)中,若,即在上满足,在上递减, ,不存在最大值,则;方程有2个不相等的正实数根,令其为,且不妨设,则,在递减,在递增,在递减,对任意,有,对任意,有,(a),将,代入上式,消去,得:(a),由在递增,得,设,即在,递增,(e),(a)存在最大值为【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题11已知函数,其中.(1)若函数的图象与直线在第一象限有交点,求的取值范围.(2)当时,
17、若有两个零点,求证:.【答案】(1);(2)证明见解析.【分析】(1)根据题意设,问题转化为方程,在有解,求导,分类讨论若,若,若时,分析单调性,进而得出结论.(2)运用分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证.【详解】解:(1)设,则由题设知,方程,在有解,而.设,则.若,由可知,且,从而,即在上单调递减,从而恒成立,因而方程在上无解.若,则,又时,因此,在上必存在实根,设最小的正实根为,由函数的连续性可知,上恒有,即在上单调递减,也即,在上单调递减,从而在上恒有,因而在上单调递减,故在上恒有,即,注意到,因此,令时,则有,由零点的存在性定理可知函数在,上有零点,符合题意
18、.若时,则由可知,恒成立,从而在上单调递增,也即在上单调递增,从而恒成立,故方程在上无解.综上可知,的取值范围是.(2)因为有两个零点,所以(2),即,设,则要证,因为,又因为在上单调递增,所以只要证明,设,则,所以在上单调递减,(2),所以,因为有两个零点,所以,方程即构造函数,则,记,则在上单调递增,在上单调递减,所以,且,设,所以递增,当时,当时,所以,即,所以,同理,所以,所以,所以,由得:,综上:.【点睛】本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.12已知函数.(1)若在单调递增,求a的值;(2)当时,设函数的最小值为,求函数的值域
展开阅读全文