高考数学复习专题32《利用均值和方差解决风险评估和决策型问题》教师版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题32《利用均值和方差解决风险评估和决策型问题》教师版.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用均值和方差解决风险评估和决策型问题 高考 数学 复习 专题 32 利用 均值 方差 解决 风险 评估 决策 问题 教师版 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题32 利用均值和方差解决风险评估和决策型问题一、多选题 1某赛季甲、乙两名篮球运动员各6场比赛得分情况用茎叶图记录,下列四个结论中,正确的是( )A甲运动员得分的极差大于乙运动员得分的极差B甲运动员得分的中位数大于乙运动员得分的中位数C甲运动员得分的平均值大于乙运动员得分的平均值D甲运动员的成绩比乙运动员的成绩稳定【答案】ABC【分析】对各个选项分别加以判断:根据极差的定义结合图中的数据,可得出A正确;根据中位数的定义结合图中的数据,可得出B正确;通过计算平均数的公式结合图中的数据,可得出C正确;通过计算方差的公式,结合图中的数据,可得出D不正确由此可以得出答案【详解】首先将茎叶图的数据还
2、原:甲运动员得分:18 20 35 33 47 41乙运动员得分:17 19 19 26 27 29对于选项A,极差是数据中最大值与最小值的差,由图中的数据可得甲运动员得分的极差为,乙运动员得分的极差为,得甲运动员得分的极差大于乙运动员得分的极差,故A正确;对于选项B,甲数据从小到大排列:18 20 33 35 41 47处于中间的数是33、35,所以甲运动员得分的中位数是34,同理求得乙数据的中位数是22.5,因此甲运动员得分的中位数大于乙运动员得分的中位数,故B正确;对于选项C,甲运动员的得分平均值约为,乙运动员的得分平均值为,因此甲运动员的得分平均值大于乙运动员的得分平均值,故C正确;对
3、于选项D,分别计算甲、乙两个运动员得分的方差,方差小的成绩更稳定.可以算出甲的方差为:,同理,得出乙的方差为:因为乙的方差小于甲的方差,所以乙运动员的成绩比甲运动员的成绩稳定,故D不正确.故选:ABC.【点睛】本题考查了茎叶图、极差、平均数与方差等统计中常的几个知识点,属于中档题值得注意的是数据的稳定性与数据的方差有关,方差越小的数据稳定性越好二、解答题22020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3
4、个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1);(2)选择第二种方案更合算.【分析】(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率;(2)选择方案一,
5、计算所付款金额的分布列和数学期望值,选择方案二,计算所付款金额的数学期望值,比较得出结论.【详解】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为、.,.故的分布列为,所以(元).若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第二种抽奖方案更合算.【点睛】方法点睛:本题考查离散型随机变量的分布列和数学期望,解题步骤如下:(1)判断随机变量的可能取值;(2)说明随机变量取各值的意义(即表示什么事件)并求出取该值的概率;(3)
6、列表写出随机变量的分布列;(4)利用期望公式求值3某蔬菜种植基地有一批蔬菜需要两天内采摘完毕,天气预报显示这两天每天是否有雨相互独立,无雨的概率都为0.8.现有两种方案可以选择:方案一:基地人员自己采摘,不额外聘请工人,需要两天完成,两天都无雨收益为2万元,只有一天有雨收益为1万元,两天都有雨收益为0.75万元.方案二:基地额外聘请工人,只要一天就可以完成采摘.当天无雨收益为2万元,有雨收益为1万元.额外聘请工人的成本为万元.问:(1)若不额外聘请工人,写出基地收益的分布列及基地的预期收益;(2)该基地是否应该外聘工人?请说明理由.【答案】(1)分布列见解析;期望为万元;(2)答案不唯一,具体
7、见解析.【分析】(1)求出每种收益情况的概率,列出分布列,最后根据数学期望公式进行求解即可;(2)根据题意求出基地额外聘请工人情况下的数学期望,结合(1)中数据,利用比较法分类讨论进行判断即可.【详解】(1)基地收益的可能值为2,1,0.75,因为两天每天无雨的概率都为0.8,所以两天每天有雨的概率都为,则,故的分布列为210.750.640.320.04则.(2)设基地额外聘请工人时的收益为万元,则其预期收益,当时,即时,不外聘工人;当时,即时,外聘工人;当时,即时,是否外聘工人均可以,综上可得,当额外聘请工人的成本高于0.17万元时,不外聘工人,当成本低于0.17万元时,外聘工人,当成本恰
8、为0.17万元时,是否外聘工人均可以.【点睛】本题考查了离散型随机变量分布列,考查了数学期望的应用,考查了数学阅读能力和数学运算能力.4目前,新冠病毒引发的肺炎疫情在全球肆虐在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,我国的“新冠肺炎”疫情在今年二月份已得到控制甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如下图所示的折线图:(1)根据图中甲、乙两个地区折线图的信息,分别从均值与方差的角度比较甲乙两地新增确诊人数的统计结论(不用计算数据,给出判断即可);(2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划
9、对甲地区的项目或乙地区的项目投入研发资金经过评估,对于项目,每投资十万元,一年后利润是1.38万元,1.17万元,1.16万元的概率分别为,;对于项目,产品价格在一年内需进行2次独立的调整,每次价格调整中,产品价格下调的概率都是,且产品价格的下调次数为0,1,2时,每投资十万元,一年后相应利润是1.4万元,1.25万元,0.6万元对项目投资十万元,一年后利润的随机变量记为,对项目投资十万元,一年后利润的随机变量记为()求,的分布列和数学期望,;()如果你是该企业投资决策者,将做出怎样的决策?请写出决策理由【答案】(1)甲地区比乙地区的新增人数的均值小;甲地区比乙地区的方差大;(2)()分布列见
10、解析,;()当时,投资项目,当时,两个项目都可以,当时,投资项目【分析】(1)甲地区比乙地区的新增人数的均值小;甲地区比乙地区的方差大;(2)()根据数据直接列出分布列,再由期望公式计算出期望;()比较和的大小可得结论【详解】解:(1)甲地区比乙地区的新增人数的均值小;甲地区比乙地区的方差大;(2)()由题意得的概率分布列为:1.381.171.16所以,所以的概率分布列为:1.41.250.6所以,()当时,得,即,解得;当时,;当时,;所以,当时,投资项目,当时,两个项目都可以,当时,投资项目【点睛】本题考查统计图表的认识,考查随机变量的概率分布列和数学期望,考查统计数据的应用,旨在考查学
11、生的数据处理能力,运算求解能力5疫情过后,为了增加超市的购买力,营销人员采取了相应的推广手段,每位顾客消费达到100元以上可以获得相应的积分,每花费100积分可以参与超市的抽奖游戏,游戏规则如下:抽奖箱中放有2张奖券,3张白券,每次任取两张券,每个人有放回的抽取三次,即完成一轮抽奖游戏;若摸出的结果是“2张奖券”三次,则获得10100积分,若摸出的结果是“2张奖券”一次或两次,则获得300积分,若摸出“2张奖券”的次数为零,则获得0积分;获得的积分扣除花费的100积分,则为该顾客所得的最终积分;最终积分若达到一定的标准,可以兑换电饭锅.洗衣机等生活用品.(1)求一轮抽奖游戏中,甲摸出“2张奖券
12、”的次数为零的概率;(2)记一轮抽奖游戏中,甲摸出“2张奖券”的次数为,求的分布列以及数学期望;(3)试用概率与统计的相关知识,从数学期望的角度进行分析,多次参与抽奖游戏后,甲的最终积分情况.【答案】(1);(2)分布列答案见解析,数学期望:;(3)多次参与抽奖活动后,可以估计中的最终积分会越来越少.【分析】(1)先求出摸出“2张奖券”的概率,再根据重复实验的概率公式可计算;(2)可知的可能取值为0,1,2,3,分别求出概率即可得出分布列,求出数学期望;(3)记一轮抽奖游戏后,甲的最终积分为,则可得出分布列,求出的期望,可得期望为负,从而判断最终积分会越来越少.【详解】(1)每次抽取,摸出“2
13、张奖券”的概率,故一轮游戏中,甲摸出“2张奖券”的次数为零的概率.(2)依题意,的可能取值为0,1,2,3,故,故的分布列为:0123故.(3)记一轮抽奖游戏后,甲的最终积分为,则的分布列为20010000故,可知一轮游戏过后,甲的最终积分的期望为负数,故多次参与抽奖活动后,可以估计中的最终积分会越来越少.【点睛】本题考查独立重复事件概率的求法,考查分布列和数学期望的求法,属于中档题.6某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品;当时,产品为三级品.现用两种新配方(分别称为配方和配方)做实验,各生产了100件这种产品,
14、并测量了每件产品的质量指标值,得到下面试验结果:配方的频数分布表指标值分组频数10304020配方的频数分布表指标值分组频数510153040(1)从配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;(2)若这种新产品的利润率与质量指标满足如下条件:,其中,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?【答案】(1)(2)配方生产的产品平均利润率为,配方生产的产品平均利润率为,投资配方的产品平均利润率较大【分析】(1)按分层抽样抽取的5件产品中有2件为二级品,记为,有3件为一级品,记为,可得从这
15、5件产品中任取3件的取法及恰好取到1件的取法,可得答案;(2)分别将与用表示,计算出的值,由可得哪种配方的产品平均利润率较大.【详解】解:(1)由题知,按分层抽样抽取的5件产品中有2件为二级品,记为,有3件为一级品,记为,从5件产品中任取3件共有10种取法,枚举如下:,其中恰好取到1件二级品共有6种取法,所以恰好取到1件二级品的概率为.(2)由题知配方生产的产品平均利润率,配方生产的产品平均利润率,所以,因为,所以,所以投资配方的产品平均利润率较大.【点睛】本题主要考查概率的求法,考查了离散型随机变量的分布列和数学期望的求法,属于中档题.7某企业拥有三条相同的且相互独立的生产线据统计,每条生产
16、线每月出现故障的概率为,且至多可能出现一次故障(1)求该企业每月有且只有条生产线出现故障的概率;(2)在正常生产的情况下,每条生产线每月的利润是万元;如果一条生产线出现故障能及时维修,还能创造万元的利润;如果出现故障不能及时维修,该生产线就没有利润为提高生产效益,企业决定安排维修工人对出现故障的生产线进行维修如果一名维修工人每月只能及时维修一条生产线,且一名工人每月所需费用为万元,以该企业每月实际利润的期望值为决策依据,你选择安排几名维修工?(实际利润生产线创造利润维修工人费用)【答案】(1);(2)安排二名维修工.【分析】(1)由题知服从二项分布,直接利用二项分布的概率计算公式.(2)分类讨
17、论思想,分别计算安排1名,2名,3名维修工时,每月的实际获利润期望值,并比较,选出安排几名维修工合适【详解】(1)设3条生产线中出现故障的条数为,则服从二项分布因此该企业每月有且只有1条生产线出现故障的概率:(2)若安排一名维修工时,设该企业每月的实际获利为万元若,则;若,则;若,则;若,则;又, ,此时,实际获利的均值.若安排二名维修工时,设该企业每月的实际获利为万元若,则;若,则;若,则;若,则;此时,实际获利的均值,可知若安排三名维修工时,设该企业每月的实际获利为万元若,则;若,则;若,则;若,则;此时,实际获利的均值,可知.由于利润期望值最大化是决策的依据,在上述情形中最大,由计算过程
18、易知安排三名以上的维修工时利润还会下降,故选择安排二名维修工,此时实际利润最大【点睛】(1)考查了二项分布的判定及概率的计算.(2)离散型随机变量的期望与方差的应用,是高考的重要考点,不仅考查学生的理解能力与计算能力,而且不断创新问题情境,突出学生运用概率,期望和方差解决实际问题的能力,属于中档题.8已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者血液化验结果呈阳性的即为感染者,呈阴性即为健康(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:逐一化验;平均分组混合化验:先将血液样本平均分成若干组,对组内血液混
19、合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者(i)采取逐一化验,求所需化验次数的分布列及数学期望;(ii)采取平均分组混合化验(每组血液份数相同),求不同分组方法所需化验次数的数学期望你认为选择哪种化验方案更合理?请说明理由【答案】(1);(2)(i)分布列见解析,数学期望为;(ii)分类讨论,答案见解析【分析】(1)总数为,抽到感染者,则从余下5名某疾病病毒密切接触者中,再抽2人,有,从而求得抽到感染者的概率;(2)分别求出方案(i)和方案(ii)的分布列和均值,注意方案(ii)采取平均分组混合化验,又平均分成3组和平均分成2组两
20、种情况,再通过对比得出结论.【详解】(1)6名密切接触者中随机抽取3名共有种方法,抽取3名中有感染者的抽法共有种方法,所以抽到感染者的概率 ;(2)(i)按逐一化验法,的可能取值是1,2,3,4,5, , , , ,表示第5次化验呈阳性或前5次化验都呈阴性(即不检验可确定第6个样本为阳性),分布列如下:12345所以;(ii)平均分组混合化验,6个样本可按平均分成2组,或者按分成3组如果按分2组,所需化验次数为,的可能取值是2,3,分布列如下:23 如果按分3组,所需化验次数为,的可能取值是2,3,分布列如下:23 因为, 所以我认为平均分组混合化验法较好,按或分组进行化验均可【点睛】本题主要
21、考查了随机事件概率的计算,以及离散型随机变量的分布列的均值与方差,属于中档题.9某厂加工的零件按箱出厂,每箱有个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有个次品,则对剩下的个零件逐一检验已知每个零件检验合格的概率为,每个零件是否检验合格相互独立,且每个零件的人工检验费为元(1)设1箱零件人工检验总费用为元,求的分布列;(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为元,现有箱零件需要检验,以检验总费用的数学期望为依据,在人工检验
22、与机器检验中,应该选择哪一个?说明你的理由【答案】(1)分布列见解析;(2)人工检验,详见解析【分析】(1)根据题意,工人抽查的5个零件中,分别计算出5个都是正品或者都是次品,5个不全是次品的人工费用,得出的可能值,利用二项分布分别求出概率,即可列出的分布列;(2)由(1)求出的数学期望,根据条件分别算出1000箱零件的人工检验和机器检验总费用的数学期望,比较即可得出结论.【详解】(1)的可能取值为,则的分布列为(2)由(1)知,1000箱零件的人工检验总费用的数学期望为元1000箱零件的机器检验总费用的数学期望为元,且,应该选择人工检验【点睛】该题考查离散型随机变量的实际应用,求离散型随机变
展开阅读全文