高考数学复习专题33《利用条件概率公式求解条件概率》教师版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题33《利用条件概率公式求解条件概率》教师版.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用条件概率公式求解条件概率 高考 数学 复习 专题 33 利用 条件 概率 公式 求解 教师版 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题33 利用条件概率公式求解条件概率一、单选题 1袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )A3/5B3/4C1/2D3/10【答案】C【分析】先记事件A为“第一次取到白球”,事件B为“第二次取到白球”,则事件AB为“两次都取到白球”,根据题意得到与,再由条件概率,即可求出结果.【详解】记事件A为“第一次取到白球”,事件B为“第二次取到白球”,则事件AB为“两次都取到白球”,依题意知,所以,在第一次取到白球的条件下,第二次取到白球的概率是故选:C.【点睛】本题主要考查条件概率与独立事件,熟记条件概率的计算公式即可,
2、属于常考题型.2有歌唱道:“江西是个好地方,山清水秀好风光.”现有甲乙两位游客慕名来到江西旅游,分别准备从庐山、三清山、龙虎山和明月山个著名旅游景点中随机选择其中一个景点游玩,记事件:甲和乙至少一人选择庐山,事件:甲和乙选择的景点不同,则条件概率( )ABCD【答案】D【分析】首先根据题意分别算出和,再利用条件概率公式计算即可.【详解】由题知:事件:甲和乙至少一人选择庐山共有:种情况,事件:甲和乙选择的景点不同,且至少一人选择庐山,共有种情况,.故选:D【点睛】本题主要考查条件概率,理解条件概率及掌握公式为解题的关键,属于中档题.3长春气象台统计,7月15日净月区下雨的概率为,刮风的概率为,既
3、刮风又下雨的概率为,设事件为下雨,事件为刮风,那么( )ABCD【答案】B【分析】确定,再利用条件概率的计算公式,即可求解.【详解】由题意,可知,利用条件概率的计算公式,可得,故选B.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )ABCD【答案】C【分析】在下雨条件下吹东风的概率=既吹东风又下雨的概率 下雨的概率【详解】在下雨条件下吹东风的概率为 ,选C【点睛】本题考查条件概率的
4、计算,属于简单题5甲、乙、丙、丁四位同学计划去4个景点旅游,每人只去一个景点,设事件=“四位同学去的景点不相同”,事件=“甲同学独自去一个景点”,则( )AB CD【答案】A【分析】由题意结合计数原理的知识求出所有基本事件数、发生的基本事件数、发生的基本事件数,由古典概型概率公式可得、,再利用条件概率概率公式即可得解.【详解】甲、乙、丙、丁四位同学计划去4个景点旅游,每人只去一个景点共有个基本事件,甲同学独自去一个景点,共有个基本事件,则;事件、同时发生即事件:四位同学去的景点不相同发生,共有个基本事件,则;所以.故选:A.【点睛】本题考查了条件概率的求解,考查了计数原理与古典概型概率公式的应
5、用,熟记公式、合理分步是解题关键,属于中档题.6袋中有大小完全相同的2个白球和3个黄球,逐个不放回的摸出两球,设“第一次摸得白球”为事件,“摸得的两球同色”为事件,则( )ABCD【答案】C【解析】= ,选C.7已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为( )ABCD【答案】B【分析】记事件第一次取到的是合格高尔夫球,事件第二次取到不合格高尔夫球,由题意可得事件发生所包含的基本事件数,事件发生所包含的基本事件数,然后即可求出答案.【详解】记事件第一次取到的是合格高尔夫球事件第二次取到不合格高尔夫球由题意可得事件
6、发生所包含的基本事件数事件发生所包含的基本事件数所以故选:B【点睛】本题考查的是条件概率,较简单.8袋中装有形状和大小完全相同的4个黑球,3个白球,从中不放回地依次随机摸取两球,在第一次摸到了黑球的条件下,第二次摸到白球的概率是( )ABCD【答案】C【分析】首先求出第一次摸到黑球的概率,再求出第二次摸到白球的概率,利用条件概率的求法公式即可求解.【详解】设第一次摸到黑球为事件,则,第二次摸到白球为事件,则,设第一次摸到黑球的条件下,第二次摸到球的概率为.故选:C.【点睛】本题考查了条件概率的求法,属于基础题.9已知,则等于( )ABCD【答案】B【分析】直接利用条件概率公式求解.【详解】因为
7、,所以,故选:B【点睛】本题主要考查条件概率的求法,属于基础题.10对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是( )ABCD【答案】D【分析】分别求出第一次摸出的是次品的概率以及第一次摸出的是次品,第二次摸到的是正品的概率,结合条件概率的计算公式即可求出所求答案.【详解】解:记“第一次摸出的是次品”, “第二次摸到的是正品”,由题意知,,,则,故选:D.【点睛】本题考查了条件概率的求解,属于基础题.11一袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有1个白球的概率为,现从中不放回地取球,每次取1球
8、,取2次,若已知第2次取得白球的条件下,则第1次取得黑球的概率为( )ABCD【答案】A【分析】先计算出黑球和白球的数量,然后根据条件概率计算公式,计算出所求概率.【详解】设黑球有个(),则白球有个. 从袋中任意摸出2个球,至少有1个白球的概率为,没有白球的概率为.即,由于,故解得.所以黑球有个,白球有个.设事件第2次取得白球,事件第1次取得黑球,.所以已知第2次取得白球的条件下,则第1次取得黑球的概率为.故选:A【点睛】本小题主要考查条件概率计算,属于基础题.12“幻方”最早记载于我国公元前500年的春秋时期大戴礼中,阶幻方(,)是由前个正整数组成的一个阶方阵,其各行各列及两条对角线所含的n
9、个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15.现从如图所示的3阶幻方中任取3个不同的数,记“取到的3个数和为15”为事件,“取到的3个数可以构成一个等差数列”为事件,则( )ABCD【答案】D【分析】根据题意,先列举出事件发生对应的基本事件,再列举出事件同时发生对应的基本事件,基本事件的个数比,即为所求的概率.【详解】根据题意,事件包含的基本事件有:,;共个基本事件;事件同时发生包含的基本事件有:,共个基本事件,所以.故选:D.【点睛】本题主要考查求条件概率,属于基础题型.132020年疫情的到来给我们生活学习等各方面带来种种困难.为了顺利迎接高考,省里制定了周密的毕业年级复学计划.
10、为了确保安全开学,全省组织毕业年级学生进行核酸检测的筛查.学生先到医务室进行咽拭子检验,检验呈阳性者需到防疫部门做进一步检测.已知随机抽一人检验呈阳性的概率为0.2%,且每个人检验是否呈阳性相互独立,若该疾病患病率为0.1%,且患病者检验呈阳性的概率为99%.若某人检验呈阳性,则他确实患病的概率( )A0.99%B99%C49.5%.D36.5%【答案】C【分析】利用条件概率可求某人检验呈阳性时他确实患病的概率.【详解】设为“某人检验呈阳性”,为“此人患病”.则“某人检验呈阳性时他确实患病”为,又,故选:C.【点睛】本题考查条件概率的计算及其应用,此题需将题设的各个条件合理转化为事件的概率或条
11、件概率.14已知,则等于( )ABCD【答案】B【分析】利用条件概率公式计算可得结果.【详解】由条件概率公式得.故选:B.【点睛】本题考查利用条件概率公式计算概率值,考查计算能力,属于基础题.15端午节是我国的传统节日,每逢端午家家户户都要吃粽子,现有5个粽子,其中3个咸蛋黄馅2个豆沙馅,随机取出2个,事件“取到的2个为同一种馅”,事件“取到的2个都是豆沙馅”,则( )ABCD【答案】A【分析】分别计算出取出的两个粽子为同一种馅,以及取到的2个都是豆沙馅的基本事件个数,然后由条件概率公式计算即可.【详解】由已知,有5个粽子,其中3个咸蛋黄馅2个豆沙馅,随机取出2个,则,所以故选:A【点睛】本题
12、考查条件概率的计算公式,以及古典概率的计算方法,属于基础题.16从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个数均为偶数”,则( )ABCD【答案】D【分析】分别计算出和,由条件概率公式可计算求得结果.【详解】由题意知:事件有,共个基本事件;事件有,共个基本事件;,.故选:.【点睛】本题考查条件概率的求解问题,属于基础题.17如下图,四边形是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形内”,用B表示事件“豆子落在扇形 (阴影部分)内”,则( )ABCD【答案】C【分析】由已知关系分别求出,由
13、几何概型求概率的计算方式求得与,最后利用条件概率计算公式求得答案.【详解】因为四边形是以O为圆心,半径为1的圆的内接正方形,即,则,所以A表示事件“豆子落在正方形内”, B表示事件“豆子落在扇形”,则AB表示事件“豆子落在三角形EOH内”,所以故选:C【点睛】本题考查在几何图形中求条件概率,属于简单题.18某学校高三()班要从名班干部(其中名男生,名女生)中选取人参加学校优秀班干部评选,事件男生甲被选中,事件有两名女生被选中,则( )ABCD【答案】B【分析】计算出事件、的概率,利用条件概率公式可求得的值.【详解】由题意可得,事件男生甲与两名女生被选中,则,因此,.故选:B.【点睛】本题考查条
14、件概率的计算,考查运算求解能力和推理论证能力,考查数学运算和逻辑推理核心素养,属于中等题.19从标有数字1,2,3,4,5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是偶数的情况下,第二次抽到卡片是奇数的概率为( )ABCD【答案】C【分析】设事件表示“第一张抽到偶数”,事件表示“第二张抽取奇数”,分别求出和,利用条件概率计算公式即可求得结果.【详解】从标有1,2,3,4,5五张卡片中,依次抽出2张,设事件表示“第一张抽到偶数”,事件表示“第二张抽取奇数”,则,在第一次抽到卡片是偶数的情况下,第二次抽到卡片是奇数的概率为,故选:C.【点睛】本题主要考查的是条件概率的计算,要熟记
15、条件概率的计算公式,属于基础题.事件发生的前提下,事件发生的概率,用公式可表示为.20某次校园活动中,组织者给到场的前1000名同学分发编号的号码纸,每人一张,活动结束时公布获奖规则.获奖规则为:号码的三位数字之和是7的倍数者可获得纪念品;号码的三位数字全是奇数者可获得纪念品.已知某同学的号码满足获得纪念品的条件,则他同时可以获得纪念品的概率是( )A0.016B0.032C0.064D0.128【答案】D【分析】记某同学获得纪念品纪念品分別为事件,由分步乘法计数原理结合古典概型概率公式可得;再由分类加法、排列组合的知识结合古典概型概率公式可得;最后由条件概率公式即可得解.【详解】记某同学获得
16、纪念品纪念品分別为事件,则事件发生的充要条件是:三位数字均是1,3,5,7,9五个数中的一个,对应的概率;事件是在三位数字均为奇数的基础上,还需满足三位数字之和为7的倍数,三个之间的数字之和范围为,又因为每位数字都是奇数,故其和亦为奇数,故三位数字之和只可能是7或21,所以三位数字从小到大排列只有以下五种可能:1,1,5,对应的三位数个数为;1,3,3,对应的三位数个数为;3,9,9,对应的三位数个数为;5,7,9,对应的三位数个数为;7,7,7,对应的三位数有1个;故.于是所求概率为.故选:D.【点睛】本题考查了计数原理及古典概型概率公式的应用,考查了条件概率公式的应用及运算求解能力,属于中
17、档题.21假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( )ABCD【答案】B【分析】记事件为“至少有一个女孩”,事件为“另一个也是女孩”,分别求出、的结果个数,问题是求在事件发生的情况下,事件发生的概率,即求,由条件概率公式求解即可.【详解】解:一个家庭中有两个小孩只有4种可能:男,男,男,女,女,男,女,女记事件为“至少有一个女孩”,事件为“另一个也是女孩”,则(男,女),(女,男),(女,女),(男,女),(女,男),(女,女),(女,女)于是可知,问题是求在事件发生的情况下,事件发生的概率,即求,由条件概率公式,得故选:B【点睛】本题的考
18、点是条件概率与独立事件,主要考查条件概率的计算公式:,等可能事件的概率的求解公式:(其中为试验的所有结果,为基本事件的结果).22甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( )ABCD【答案】B【分析】根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案.【详解】根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,则;则在目标被击中的情况下,甲、乙同时击中目标的概率为
19、.故选:B.【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.23如图,在边长为1的正方形内任取一点,用表示事件“点恰好取自曲线与直线及轴所围成的曲边梯形内”,表示事件“点恰好取自阴影部分内”,则( )ABCD【答案】A【详解】根据题意,正方形的面积为11=1,而与直线及轴所围成的曲边梯形的面积为而阴影部分的面积为,正方形中任取一点,点取自阴影部分的概率为, .故选:A考点:几何概型,条件概率24.三台中学实验学校现有三门选修课,甲、乙、丙三人每人只选修一门,设事件A为“三人选修的课程都不同”,B为“甲独自选修一门”,则概率P(A
展开阅读全文