高考数学复习专题34《利用二项分布概率公式求二项分布的分布列》学生版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题34《利用二项分布概率公式求二项分布的分布列》学生版.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用二项分布概率公式求二项分布的分布列 高考 数学 复习 专题 34 利用 二项分布 概率 公式 分布 学生 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题34 利用二项分布概率公式求二项分布的分布列一、多选题 1下列结论正确的有( )A公共汽年上有10位乘客,沿途5个车站,乘客下车的可能方式有种B两位男生和两位女生随机排成一列,则两位女生不相邻的概率是C若随机変量X服从二项分布,则D已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数,众数依次成等差数列,则丢失数据的所有可能值的和为122某计算机程序每运行一次都随机出现一个五位二进制数(例如10100)其中A的各位数中出现0的概率为,出现1的概率为,记,则当程序运行一次时( )AX服从二项分布BCX的期望DX的方差3一袋中有大小相同的4个红球
2、和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是( )ABCD二、单选题4袋子中装有若干个均匀的红球和白球,从中摸出一个红球的概率是,依次从中有放回地摸球,每次摸出一个,累计2次摸到红球即停止记3次之内(含3次)摸到红球的次数为,则随机变量的数学期望( )ABCD5设随机变量,若,则( )ABCD62019年1月28日至2月3日(腊月廿三至腊月廿
3、九)我国迎来春运节前客流高峰,据统计,某区火车站在此期间每日接送旅客人数X(单位:万)近似服从正态分布,则估计在此期间,至少有5天该车站日接送旅客超过10万人次的概率为( )ABCD7经抽样调查知,高二年级有的学生数学成绩优秀.如果从全年级随机地选出50名学生,记其中数学成绩优秀的学生数为随机变量,则其期望的值为( )ABC25D8抽奖一次中奖的概率是90%,5个人各抽奖一次恰有3人中奖的概率为( )A0.93BC1(10.9)3D9某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为( )ABCD三、解答题10某单位在2020年8月8日“全民健身日”举行了
4、一场趣味运动会,其中一个项目为投篮游戏游戏的规则如下:每个参与者投篮3次,若投中的次数多于未投中的次数,得3分,否则得1分已知甲投篮的命中率为,且每次投篮的结果相互独立(1)求甲在一次游戏中投篮命中次数的分布列与期望;(2)若参与者连续玩次投篮游戏获得的分数的平均值不小于2,即可获得一份大奖现有和两种选择,要想获奖概率最大,甲应该如何选择?请说明理由11受新冠肺炎疫情影响,上学期网课时间长达三个多月,电脑与手机屏幕代替了黑板,对同学们的视力造成了非常大的损害.我市某中学为了了解同学们现阶段的视力情况,现对高三年级2000名学生的视力情况进行了调查,从中随机抽取了100名学生的体检表,绘制了频率
5、分布直方图如图所示:前50名后50名近视4032不近视1018(1)求的值,并估计这2000名学生视力的平均值(精确到0.1);(2)为了进一步了解视力与学生成绩是否有关,对本年级名次在前50名与后50名的学生进行了调查,得到的数据如列联表,根据表中数据,能否有95%把握认为视力与学习成绩有关?(3)自从“十八大”以来,国家郑重提出了人才强军战略,充分体现了国家对军事人才培养的高度重视.近年来我市空军飞行员录取情况喜人,继2019年我市有6人被空军航空大学录取之后,今年又有3位同学顺利拿到了空军航空大学通知书,彰显了我市爱国主义教育,落实立德树人根本任务已初见成效.2020年某空军航空大学对考
6、生视力的要求是不低于5.0,若以该样本数据来估计全市高三学生的视力,现从全市视力在4.8以上的同学中随机抽取3名同学,这3名同学中有资格报考该空军航空大学的人数为,求的分布列及数学期望.附:,其中.0.100.050.0250.0100.0052.7063.8415.0246.6357.87912为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在A市与B市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为2m,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树3
7、00200喜欢木棉树250250是否有99.9%的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有X个路口种植杨树,求X的分布列以及数学期望;附:P(K2k)0.1000.0500.0100.001k2.7063.8416.63510.82813在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加.中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,规定:随身携带的
8、现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”,统计如图如示.男性女性合计手机支付族101222非手机支付族30838合计402060(1)根据上述样本数据,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望.(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付
9、购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82814某几位大学生自主创办了一个服务公司提供两种民生消费产品(人们购买时每次只买其中一种)服务,他们经过统计分析发现:第一次购买产品的人购买的概率为,购买的概率为.第一次购买产品的人第二次购买产品的概率为,购买产品的概率为.第一次购买产品的人第二次购买产品的概率为,购买产品的概率也是.(1)求某人第二次来,购买的是产品的概率;(2)记第二次来公司购买产品的个人中有个人购买产品,求的分布列并求15某中学数学竞赛培训共开设有初等代数、初等几何、
10、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,才能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,课 程初等代数初等几何初等数论微积分初步合格的概率(1)求甲同学取得参加数学竞赛复赛的资格的概率;(2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列(只需列式无需计算)及期望.16江苏实行的“新高考方案:”模式,其中统考科目:“”指语文、数学、外语三门,不分文理:学生根据高校的要求,结合自身特长兴趣
11、,“”指首先在在物理、历史门科目中选择一门;“”指再从思想政治、地理、化学、生物门科目中选择门某校,根据统计选物理的学生占整个学生的;并且在选物理的条件下,选择地理的概率为;在选历史的条件下,选地理的概率为(1)求该校最终选地理的学生概率;(2)该校甲、乙、丙三人选地理的人数设为随机变量求随机变量的概率;求的概率分布列以及数学期望17在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于分的选手定为合格选手,直接参加第二轮比赛,大于等于分的选手将直接参加竞赛选拔赛.已知成绩合格的名参赛选手成绩的频率分布直方图如图所示,其中的频率构成等比数列.
12、(1)求的值;(2)估计这名参赛选手的平均成绩;(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有名选手进入竞赛选拔赛,记这名选手在竞赛选拔赛中通过的人数为随机变量,求的分布列和数学期望.18挑选空军飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、
展开阅读全文