高考数学复习专题18《利用函数的极值求参数值》教师版.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题18《利用函数的极值求参数值》教师版.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用函数的极值求参数值 高考 数学 复习 专题 18 利用 函数 极值 参数 教师版 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题18 利用函数的极值求参数值一、单选题 1若函数的极值为,则实数的值为( )ABCD【答案】D【分析】对分和两种情况讨论,分析函数的单调性,结合函数的极值为,可求得实数的值.【详解】由已知可得.当时,对任意的,此时函数在上单调递增,函数无极值;当时,令,可得,此时函数单调递减;令,可得,此时函数单调递增.所以,函数的极小值为,令,则且,.当时,函数单调递增;当时,函数单调递减.所以,由于,.故选:D.【点睛】本题考查利用函数的极值存在的条件求参数的值,考查计算能力,属于中等题.2已知,若是函数的极小值点,则实数的取值范围为( )A且BC且D【答案】B【分析】由既是的极小值点,又是零点,且的
2、最高次项系数为1,因此可设,这样可求得,然后求出,求得的两个零点,一个零点是,另一个零点必是极大值点,由可得的范围【详解】因为,是函数的极小值点,结合三次函数的图象可设,又,令得,即,由得,是极小值点,则是极大值点,所以故选:B【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围3若,且函数在处有极值,则的最大值等于( ).A16B25C36D49【答案】C【分析】先对函数求导,根据题中条件,得到,再结合基本不等式,即可得出结果.【详解】因为,所以,又函数在处有极值,所以,即,因为,所以,当且仅当时,等号成立.故选:
3、C.4若函数不存在极值点,则的取值范围是( )A或B或CD【答案】D【分析】由已知条件得只有一个实数根或没有实数根,从而 由此能求出的取值范围.【详解】, 在定义域内不存在极值, 只有一个实数根或没有实数根, 故选:D.【点睛】本題主要考查极值的概念,利用导数研究函数的极值,考查发推理论证能力,转化能力,属于中档题.5函数在处取得极值,则( )A,且为极大值点B,且为极小值点C,且为极大值点D,且为极小值点【答案】B【分析】先求导,再根据题意得,由此求得,再根据导数研究函数的极值【详解】解:,又在处取得极值,得,由得,即,即,同理,由得,在处附近的左侧为负,右侧为正,函数在处取得极小值,故选:
4、B【点睛】本题主要考查利用函数的导数研究函数的单调性与极值,属于基础题6已知在处取得极值,则的最小值是( )AB2CD【答案】D【分析】求导,根据极值点得到,展开利用均值不等式计算得到答案.【详解】,故,根据题意,即,经检验在处取得极值.,当且仅当,即时,等号成立.故选:.【点睛】本题考查了根据极值点求参数,均值不等式,意在考查学生的综合应用能力.7若函数在区间内有极小值,则的取值范围是( )ABCD【答案】C【分析】求出,根据在内有极小值可得的图象性质,从而可求的取值范围.【详解】,由题意在区间上有零点,且在该零点的左侧附近,有,右侧附近有.则在区间上有零点,且在该零点的左侧附近,有,右侧附
5、近有.当时,为开口向上的抛物线且,故,无解.当,则,舍.当,为开口向下的抛物线,其对称轴为,故,解得.故选:C.【点睛】本题考查函数的极值,注意根据极值的类型判断导数的函数图象性质,本题属于中档题.8已知函数的极大值为4,若函数在上的极小值不大于,则实数的取值范围是( )ABCD【答案】A【分析】对函数求导,令导函数为0,结合函数单调性可得极值,明确极大值和极小值的定义求解即可.【详解】,当时,无极值;当时,,的递增区间是,递减区间是,在处取得极大值,则有,解得,于是,.当时,在上不存在极小值.当时,在单调递减,在单调递增,所以在处取得极小值,依题意有,即解得.故选:A.【点睛】本小题主要考查
6、的数学知识是:函数与导数,导数与单调性、极值的关系,考查分类讨论的数学思想方法.9已知函数在处取极大值,则( )A2或6B2或6C6D2【答案】C【分析】由题意可知,从而可求得的值,然后再验证在x2处是否取得极大值即可【详解】解:由,得,因为函数在处取极大值,所以,即,解得或,当时,令,得或,令,得,所以在处取得极大值,在处取得极小值,所以不合题意,当时,令,得或,令,得,所以在处取得极大值,在处取得极小值,所以,故选:C【点睛】此题考查由函数的极值点求参数,考查导数的应用,属于基础题10已知a为常数,函数有两个极值点x1,x2(x1x2),则下列结论正确的是( )ABCD【答案】C【分析】求
7、导得,令,转化条件为要使函数、的图象有两个不同交点,由导数的几何意义、函数的图象可得;数形结合可得当时,函数单调递减,且,即可得、,即可得解.【详解】因为,所以若要使函数有两个极值点,则有两个零点,令,则要使函数、的图象有两个不同交点,易知直线恒过点,在同一直角坐标系中作出函数、的图象,如图,当直线与函数的图象相切时,设切点为,则,所以,所以当且仅当时,函数、的图象有两个不同交点,所以若要使函数有两个极值点,则,故A、B错误;当时,由图象可得当时,函数单调递减,且,所以, ,故C正确,D错误.故选:C.【点睛】本题考查了利用导数研究函数的切线、极值及函数与方程的综合应用,考查了运算求解能力与数
8、形结合思想,属于中档题.二、解答题11已知函数(为自然对数的底数).(1)当时,求证:函数在上恰有一个零点;(2)若函数有两个极值点,求实数的取值范围.【答案】(1)证明见解析;(2).【分析】(1)法一:利用导数的性质进行求证即可;法二:利用函数的性质直接判断即可求证;(2)对求导,得,构造函数,利用导数的性质求出参数的范围即可【详解】(1)法一:易得:,令,令,在上单调递减,且;在上单调递增且有,故命题获证.法二:易得:,恒成立,有唯一零点.(2)易得,令得,在上单调递减且;在上单调递增且有,函数有两个极值点,.【点睛】关键点睛:解题的关键在于求导得到后,构造函数,并通过对通过求导得到奇函
9、数的极值点,进而求出的范围,难度属于中档题12已知函数,且在处取得极值()求b的值;()若当时,恒成立,求c的取值范围;()对任意的,是否恒成立?如果成立,给出证明;如果不成立,请说明理由【答案】();()c的取值范围是()成立,证明见解析.【分析】()由题意得f(x)在x1处取得极值所以f(1)31+b0所以b2()利用导数求函数的最大值即g(x)的最大值,则有c22+c,解得:c2或c1()对任意的x1,x21,2,|f(x1)f(x2)|恒成立,等价于|f(x1)f(x2)|f(x)maxf(x)min【详解】()f(x)x3x2+bx+c,f(x)3x2x+bf(x)在x1处取得极值,
10、f(1)31+b0b2经检验,符合题意()f(x)x3x22x+cf(x)3x2x2(3x+2)(x1),当x(1,)时,f(x)0当x(,1)时,f(x)0当x(1,2)时,f(x)0当x时,f(x)有极大值c又f(2)2+cc,f(1)ccx1,2时,f(x)最大值为f(2)2+cc22+cc1或c2()对任意的x1,x21,2,|f(x1)f(x2)|恒成立由()可知,当x1时,f(x)有极小值c又f(1)ccx1,2时,f(x)最小值为c|f(x1)f(x2)|f(x)maxf(x)min,故结论成立【点睛】本题考查函数的极值及最值的应用,易错点是知极值点导数为0要检验,结论点睛:|f
11、(x1)f(x2)|a恒成立等价为f(x)maxf(x)mina13设函数,其图像与轴交于,两点,且(I)求的取值范围;()证明:【答案】(I);()证明见解析.【分析】(I)先求出,易得当不符合题意;当时,当时,取得极小值,所以,得到的范围,再由,结合零点存在定理,得到答案.()由题意,两式相减,得到,记,将转化为,再由导数求出其单调性,从而得到.【详解】(I)解:因为,所以.若,则,则函数是单调增函数,的图像与轴至多有一个交点,这与题设矛盾.所以,令,则.当时,是单调减函数;时,是单调增函数;于是当时,取得极小值.因为函数的图像与轴交于两点,所以,即.此时,存在,;存在,又,又在上连续,故
12、.()证明:因为,两式相减得.记,则,设,因为,所以,当且仅当时,即,而,所以,则,所以是单调减函数,则有,而,所以.【点睛】思路点睛:已知函数的零点情况求参数的取值范围,通常通过研究函数的单调性,进一步研究函数的值域,再解不等式求得参数的范围;证明函数值恒小于零,通过换元法构造新函数,再研究新函数的单调性和值域即可证明,不过这类题涉及知识点多,难度大.14已知函数.(1)若是函数的一个极值点,求的值;(2)当时,恒成立,求的取值范围.【答案】(1)2;(2).【分析】(1)由解析式得到导函数,结合是函数的一个极值点,即可求的值;(2)由题设分析知,在内有,结合已知,讨论、分别求的范围,然后求
13、并集即可.【详解】解:(1)由函数解析式知:,由题意,得,故.经检验,满足题意.(2)由已知,当时,只需,.当时,在单减,在单增.所以,而,故.所以,解得(舍去).当时,在单增,在单减,在单增.由于,所以只需,即,所以.当时,在单增,所以,满足题意.当时,在单增,在单减,在单增.由于,所以只需,即,所以.综上,知:.【点睛】思路点睛:已知函数极值点求参数时,一般应用极值点处的导数为0列方程;函数在闭区间内任意两个函数值的差小于定值转化为最值间的距离小于该定值,(1)当有极值则,即可得有关参数的方程;(2),恒成立转化为,;15已知函数,且(1)若函数在处取得极值,求函数的解析式;(2)在(1)
14、的条件下,令,求的单调区间;【答案】(1);(2)的单调递减区间为,单调递增区间为.【分析】(1)求出导函数,由,可解得,得函数解析式;(2)求出,然后求出的解,确定的正负,得单调区间【详解】(1)函数的定义域为由已知可得:解得,经检验:符合题意(2)的定义域为由于满足故:在上单增,故:当时,恒成立故单调递减单调递增故:的单调递减区间为,单调递增区间为【点睛】本题考查用导数研究函数的极值,求单调区间,解题基础是掌握导数的运算法则,求出导函数再根据导数与极值、单调性的关系求解16设函数(1)若函数有两个极值点,求实数的取值范围;(2)设,若当时,函数的两个极值点,满足,求证:.【答案】(1);(
15、2)证明见解析.【分析】(1)先由题中条件,得出函数定义域,由题意,得到在上有两个零点,即在上有两个不等实根,设,得到函数与直线在上有两个不同交点,对函数求导,判定其单调性,得出最值,进而可得出结果;(2)对函数求导,根据题中条件,由韦达定理,得到,求出得到,设,对其求导,用导数的方法求出最值,即可得出结果.【详解】(1)由已知,可知函数的定义域为,在上有两个零点,即方程在上有两个不等实根,设,因此函数与直线在上有两个不同交点,又,由得;由得;则函数在上单调递增,在上单调递减;则;又当时,当时,;为使函数与直线在上有两个不同交点,只需,解得,即实数的取值范围是.(2)证明:因为,由的两根为,故
16、可得,因为,所以,又,所以,解得,设,则,当,是增函数;所以;因此.【点睛】本题主要考查由函数极值点个数求参数,考查由导数的方法证明不等式,属于常考题型.17已知函数在处取得极值(1)求实数a的值(2)当时,求函数的最小值【答案】(1)1;(2).【分析】(1)在处取得极值,则可求出的值;(2)求出函数在上的单调区间,从而得出函数的最小值;【详解】解:(1)由,函数在处取得极值,解得,当时,令,得或,令,得,函数在,上单调递增,在上单调递减,极大值,极小值符合题意(2)由(1)得在上单调递增,在上单调递减;极大值,极小值,且,当时,求函数的最小值为:【点睛】本题考查利用导数研究函数的极值与最值
展开阅读全文