高考数学复习专题6《圆锥曲线中的定值问题》讲义及答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学复习专题6《圆锥曲线中的定值问题》讲义及答案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线中的定值问题 高考 数学 复习 专题 圆锥曲线 中的 问题 讲义 答案 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、专题06 圆锥曲线中的定值问题一、单选题 1过原点的直线与双曲线交于A,B两点,点P为双曲线上一点,若直线PA的斜率为2,则直线PB的斜率为( )A4B1CD二、多选题2已知椭圆的离心率为,的三个顶点都在椭圆上,设它的三条边,的中点分别为,且三条边所在直线的斜率分别,且,均不为0为坐标原点,则( )AB直线与直线的斜率之积为C直线与直线的斜率之积为D若直线,的斜率之和为1,则的值为3设是抛物线上两点,是坐标原点,若,下列结论正确的为( )A为定值B直线过抛物线的焦点C最小值为16D到直线的距离最大值为4三、解答题4已知点到的距离是点到的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于点对称
2、,点,求的最大值;(3)若过的直线与第二问中的轨迹交于,两点,试问在轴上是否存在点,使恒为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.5已知,为椭圆的左右焦点,点在椭圆上,且过点的直线交椭圆于,两点,的周长为.(1)求椭圆的方程;(2)对于椭圆,问否存在实数,使得成立,若存在求出的值;若不存在,请说明理由.6已知椭圆的离心率为,的面积为(1)求椭圆的方程;(2)设为椭圆上一点,直线与轴交于点,直线与轴交于点,求证:为定值.7已知椭圆的左、右焦点分别为F1、F2,直线ykx交椭圆于P,Q两点,M是椭圆上不同于P,Q的任意一点,直线MP和直线MQ的斜率分别为k1,k2(1)证明:k1k
3、2为定值;(2)过F2的直线l与椭圆交于A,B两点,且,求|AB|8已知双曲线的方程.(1)求点到双曲线C上点的距离的最小值;(2)已知圆的切线(直线的斜率存在)与双曲线C交于A,B两点,那么AOB是否为定值?如果是,求出定值;如果不是,请说明理由.9已知抛物线的焦点F恰为椭圆的一个顶点,且抛物线的通径(过抛物线的焦点F且与其对称轴垂直的弦)的长等于椭圆的两准线间的距离.(1)求抛物线及椭圆的标准方程;(2)过点F作两条直线,且,的斜率之积为.设直线交抛物线于A,B两点,交抛物线于C,D两点,求的值;设直线,与椭圆的另一个交点分别为M,N.求面积的最大值.10设抛物线,为的焦点,过的直线与交于
4、两点.(1)设的斜率为,求的值;(2)求证:为定值.11已知圆,动圆与圆相外切,且与直线相切.(1)求动圆圆心的轨迹的方程.(2)已知点,过点的直线与曲线交于两个不同的点(与点不重合),直线的斜率之和是否为定值?若是,求出该定值;若不是,说明理由.12已知椭圆经过点,且右焦点.(1)求椭圆的标准方程;(2)过且斜率存在的直线交椭圆于,两点,记,若的最大值和最小值分别为,求的值.13已知椭圆C:()的离心率为,短轴一个端点到右焦点F的距离为.(1)求椭圆C的标准方程;(2)过点F的直线l交椭圆于AB两点,交y轴于P点,设,试判断是否为定值?请说明理由.14如图,在平面直角坐标系中,已知,分别是椭
5、圆E: 的左、右焦点,A,B分别椭圆E的左、右顶点,且(1)求椭圆E的离心率;(2)已知点为线段的中点,M为椭圆E上的动点(异于点A、B),连接并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为、,试问是否存在常数,使得恒成立?,若存在,求出的值;若不存在,说明理由15设椭圆的左、右焦点分别为,离心率为,短轴长为.(1)求椭圆的标准方程;(2)设左、右顶点分别为、,点在椭圆上(异于点、),求的值;(3)过点作一条直线与椭圆交于两点,过作直线的垂线,垂足为.试问:直线与是否交于定点?若是,求出该定点的坐标,否则说明理由.16在平面直角坐
6、标系xOy中,已知点A(-2,1),P是动点,且(1)求动点P的轨迹C的方程;(2)过A作斜率为1的直线与轨迹C相交于点B,点T(0,t)(t0),直线AT与BT分别交轨迹C于点设直线的斜率为k,是否存在常数,使得t=k,若存在,求出值,若不存在,请说明理由.17已知P为圆:上一动点,点坐标为,线段的垂直平分线交直线于点Q.(1)求点Q的轨迹方程;(2)已知,过点作与轴不重合的直线交轨迹于两点,直线分别与轴交于两点.试探究的横坐标的乘积是否为定值,并说明理由.18已知在平面直角坐标系中,圆与轴交于,两点,点 在第一象限且为圆外一点,直线,分别交圆于点,交轴于点,()若直线的倾斜角为60,求点坐
7、标;()过作圆的两条切线分别交轴于点,试问是否为定值?若是,求出这个定值:若不是,说明理由19在平面直角坐标系xOy中,有三条曲线:;.请从中选择合适的一条作为曲线C,使得曲线C满足:点F(1,0)为曲线C的焦点,直线y=x-1被曲线C截得的弦长为8.(1)请求出曲线C的方程;(2)设A,B为曲线C上两个异于原点的不同动点,且OA与OB的斜率之和为1,过点F作直线AB的垂线,垂足为H,问是否存在定点M,使得线段MH的长度为定值?若存在,请求出点M的坐标和线段MH的长度;若不存在,请说明理由.20如图,点为椭圆的左顶点,过的直线交抛物线于,两点,点是的中点()若点在抛物线的准线上,求抛物线的标准
8、方程:()若直线过点,且倾斜角和直线的倾斜角互补,交椭圆于,两点,(i)证明:点的横坐标是定值,并求出该定值:(ii)当的面积最大时,求的值21已知椭圆:()的左右焦点分别为,焦距为2,且经过点.直线过右焦点且不平行于坐标轴,与椭圆有两个不同的交点,线段的中点为.(1)点在椭圆上,求的取值范围;(2)证明:直线的斜率与直线的斜率的乘积为定值;22已知椭圆的离心率为,点分别是的左右上下顶点,且四边形的面积为.(1)求椭圆的标准方程;(2)已知是的右焦点,过的直线交椭圆于两点,记直线的交点为,求证:点在定直线上,并求出直线的方程.23已知椭圆的左、右顶点分别为,离心率为,过点作直线交椭圆于点,(与
9、,均不重合).当点与椭圆的上顶点重合时,.(1)求椭圆的方程(2)设直线,的斜率分别为,求证:为定值.24已知椭圆C:的离心率为,过焦点且与x轴垂直的直线被椭圆C截得的线段长为2(1)求椭圆C的方程;(2)已知点,过点A的任意一条直线与椭圆C交于M,N两点,求证:25已知椭圆的离心率为,短轴一个端点到右焦点F的距离为.(1)求椭圆C的标准方程 ;(2)过点 F 的直线l交椭圆于A、B两点,交y轴 于P点,设,试判断是否为定值?请说明理由26如图所示,在平面直角坐标系中,已知点为椭圆的上顶点.椭圆以椭圆的长轴为短轴,且与椭圆有相同的离心率.(1)求椭圆的标准方程;(2)过点作斜率分别为的两条直线
10、,直线与椭圆分别交于点,直线与椭圆分别交于点.(i)当时,求点的纵坐标;(ii)若两点关于坐标原点对称,求证:为定值.四、填空题26已知A、B分别是双曲线的左右顶点,M是双曲线上异于A、B的动点,若直线MA、MB的斜率分别为,始终满足,其中,则C的离心率为_ 27在平面直角坐标系中,分别为椭圆的左、右焦点,分别为椭圆的上、下顶点,直线与椭圆的另一个交点为,若的面积为,则直线的斜率为_.专题06 圆锥曲线中的定值问题一、单选题1过原点的直线与双曲线交于A,B两点,点P为双曲线上一点,若直线PA的斜率为2,则直线PB的斜率为( )A4B1CD【答案】C【分析】设,代入双曲线的方程,作差,可得,再由
11、直线的斜率公式,结合平方差公式,计算可得所求值.【详解】由题意可设,则,即有,即,由,可得,因为,所以.故选:.二、多选题2已知椭圆的离心率为,的三个顶点都在椭圆上,设它的三条边,的中点分别为,且三条边所在直线的斜率分别,且,均不为0为坐标原点,则( )AB直线与直线的斜率之积为C直线与直线的斜率之积为D若直线,的斜率之和为1,则的值为【答案】CD【分析】由题意可得:设,利用点差法即可得出,即可判断【详解】解:椭圆的离心率为,故错;设,两式相减可得:,同理,故错,正确又,故选:CD【点睛】方法点睛:本题考查了椭圆的标准方程及其性质、斜率计算公式、中点坐标公式、点差法,考查了推理能力与计算能力,
12、属于中档题,处理中点弦问题常用的求解方法:(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有三个未知量,这样就直接联系了中点和直线的斜率,借用中点坐标公式即可求得斜率;(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解3设是抛物线上两点,是坐标原点,若,下列结论正确的为( )A为定值B直线过抛物线的焦点C最小值为16D到直线的距离最大值为4【答案】ACD【分析】由抛物线方程及斜率公式即可判断A;设直线方程,结合韦达定理即可判断B;利用韦达定理求得的最小值,即可判断C;由直线过定点可判断D.【详解】对于A,因为,所以,所
13、以,故A正确;对于B,设直线,代入可得,所以,即,所以直线过点,而抛物线的焦点为,故B错误;对于C,因为,当时,等号成立,又直线过点,所以,故C正确;对于D,因为直线过点,所以到直线的距离最大值为4,故D正确.故选:ACD.【点睛】解决本题的关键是利用抛物线的方程合理化简及韦达定理的应用,细心计算即可得解.三、解答题4已知点到的距离是点到的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于点对称,点,求的最大值;(3)若过的直线与第二问中的轨迹交于,两点,试问在轴上是否存在点,使恒为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.【答案】(1);(2)138;(3)存在,.【分析】(
14、1)设点,由題意可得,利用两点之间的距离公式化简整理可得.(2)先由的轨迹方程求出点的轨迹方程,利用两点间距离公式整理从而转化为:线性规划问题处理.(3)代入消元,韦达定理,整体思想代入,整理可得解.【详解】(1)设点,由題意可得,即,化简可得.(2)设,由(1)得点满足的方程,又点是点与点的中点,则,代入上式消去可得,即的轨迹为.令,则,可视为直线在y轴上的截距,的最小值就是直线与圆有公共点时直线纵截距的最小值,即直线与圆相切时在y轴上的截距,由直线与圆相切时圆心到直线的距离等于半径,所以,所以.因此的最大值为138.(3)存在点,使得为定值.当直线的斜率存在时,设其斜率为,则直线的方程为,
15、由,消去,得,显然,设,则,又,则要使上式恒为定值,需满足,解得,此时,为定值.当直线的斜率不存在时,由可得.所以存在点,使得为定值.【点睛】方法点睛:本题为直线与圆的综合题,与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解(2)与圆上点有关代数式的最值的常见类型及解法:形如型的最值问题,可转化为过点和点的直线的斜率的最值问题;形如型的最值问题,可转化为动直线的截距的最值问题;形如型的最值问题,可转化为动点到定点的距离平方的最值问题5已知,为椭圆的左右焦点,点在椭圆上,且过点的直线交椭圆于,两点,的周长为
16、.(1)求椭圆的方程;(2)对于椭圆,问否存在实数,使得成立,若存在求出的值;若不存在,请说明理由.【答案】(1);(2)存在,实数.【分析】(1)利用椭圆的定义,结合三角形的周长,求出,设出椭圆方程,代入点的坐标求解即可得到椭圆的方程;(2)求出,设直线的方程为,与椭圆方程联立,设,利用韦达定理,不妨设,求出,化简整理即可求得结果【详解】解:(1)根据椭圆的定义,可得,的周长为,椭圆的方程为,将代入得,所以椭圆的方程为.(2)由(1)可知,得,依题意可知直线的斜率不为0,故可设直线的方程为,由消去,整理得,设,则,不妨设,同理,所以即,所以存在实数,使得成立【点睛】关键点点睛:此题考查椭圆方
17、程的求法,考查直线与椭圆的位置关系,解题的关键是将直线方程与椭圆方程联立方程组,利用韦达定理将表示出来,然后代入中可求出的值,考查数学转化思想和计算能力,属于较难题6已知椭圆的离心率为,的面积为(1)求椭圆的方程;(2)设为椭圆上一点,直线与轴交于点,直线与轴交于点,求证:为定值.【答案】(1);(2)证明见解析.【分析】(1)根据离心率和面积建立等式求解;(2)分别求出PB直线方程,PA直线方程,得出,即可求出.【详解】(1)由题: ,解得:,所以椭圆方程为;(2)设,PB直线方程,PA直线方程,=【点睛】此题考查求椭圆的方程,根据直线与椭圆的位置关系证明定值问题,关键在于准确写出方程和点的
18、坐标,建立等式求解.7已知椭圆的左、右焦点分别为F1、F2,直线ykx交椭圆于P,Q两点,M是椭圆上不同于P,Q的任意一点,直线MP和直线MQ的斜率分别为k1,k2(1)证明:k1k2为定值;(2)过F2的直线l与椭圆交于A,B两点,且,求|AB|【答案】(1)证明见解析;(2).【分析】(1)设P(m,n),M(x,y),则Q(-m,-n),则可表示出,进而可得的表达式,又根据点P,M在椭圆上,利用点差法,即可得证;(2)设直线l的方程为xty1,A(x1,y1),B(x2,y2),联立直线与椭圆可得关于y的一元二次方程,利用韦达定理,可得的表达式,根据,可得的关系,即可求出,代入弦长公式,
19、即可求得结果.【详解】(1)证明:设P(m,n),M(x,y),则Q(-m,-n),则,则,又,故,所以为定值(2)设直线l的方程为xty1,A(x1,y1),B(x2,y2),联立消去x,得(3t24)y26ty-90,则有,又,所以-y12y2,故,解得,所以【点睛】本题考查直线与椭圆的位置关系,解题的关键设直线xty1可简化计算,联立直线与曲线,利用韦达定理,弦长公式等进行求解,考查分析理解,计算求值的能力,属中档题.8已知双曲线的方程.(1)求点到双曲线C上点的距离的最小值;(2)已知圆的切线(直线的斜率存在)与双曲线C交于A,B两点,那么AOB是否为定值?如果是,求出定值;如果不是,
20、请说明理由.【答案】(1);(2)是定值,.【分析】(1)设双曲线上任意一点为,则,利用两点间的距离公式求出,利用二次函数求最值即可;(2)设直线的方程为:,利用直线与圆相切可得到,设,直线与双曲线的方程联立消,利用韦达定理得到,再求出,最后利用得出结论即可.【详解】(1)设双曲线上任意一点为,则,当时,等号成立,即点到双曲线C上点的距离的最小值为;(2)设直线的方程为:,因为直线与圆相切,所以圆的圆心到直线的距离等于圆的半径,即,设,由消得,由题意知:,由韦达定理得,由得:,则,因为,所以为定值.【点睛】关键点睛:求解圆锥曲线中的定值问题,直线与曲线方程联立利用韦达定理求解是解题的关键.9已
21、知抛物线的焦点F恰为椭圆的一个顶点,且抛物线的通径(过抛物线的焦点F且与其对称轴垂直的弦)的长等于椭圆的两准线间的距离.(1)求抛物线及椭圆的标准方程;(2)过点F作两条直线,且,的斜率之积为.设直线交抛物线于A,B两点,交抛物线于C,D两点,求的值;设直线,与椭圆的另一个交点分别为M,N.求面积的最大值.【答案】(1);(2) 【分析】(1)由抛物线的焦点为椭圆的右焦点可得p,求出抛物线方程,根据通径与准线间的距离可求a,c,即可求出椭圆方程;(2)设出直线方程,联立抛物线方程,由根与系数关系及弦长公式可求出弦长,代入即可计算求解设出直线方程,联立椭圆方程,由根与系数关系,得出弦长,同理可得
展开阅读全文