应用统计学1课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《应用统计学1课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 统计学 课件
- 资源描述:
-
1、本课程的内容第一章 绪论第二章 统计数据的搜集、整理和 显示第三章 统计数据的描述分析第四章 参数估计第五章 参数假设检验第六章 方差分析第七章 非参数统计方法第八章 时间序列分析 第九章 相关与回归分析第十章 统计指数 教材:吴诣民 赵春艳应用统计学 陕西人民教育出版社,2006年。参考书目:1、李心愉应用经济统计学北京:北京大学出版社,2003年。2、耿修林商务经济统计学北京:科学出版社,2003年3、美戴维 R 安德森等商务与经济统计北京:中信出版社,2003。4、肖筱南新编概率论与数理统计北京:北京大学出版社,2002年。第一章 绪论 第一节 统计学的学科性质一、统计学的学科性质1、争
2、论:“方法论学科”“实质性学科”2、统计处理数据的过程:搜集数据整理数据分析数据解释数据二、统计学的分类1、描述统计学和推断统计学2、理论统计学和应用统计学第二节 统计学的几个基本概念一、总体和总体单位1、总体是由具有某种共同性质的许多个体组成的整体,构成总体的个体称为总体单位。2、两层含义:统计学研究的是大量现象的数量特征,总体包含了大量现象;统计单位具有某一共同性质,但其他的性质、特征是不同的,便于在差异中寻找规律。二、标志和指标1、标志是说明总体单位特征和属性的名称,分为数量标志和品质标志。2、指标是说明总体现象数量特征的概念和数值。按其反映数量特点的不同,分为数量指标和质量指标。三、统
3、计指标1、从总体的一个特征到具体数值,中间有很多步要走。2、以GDP的核算为例来说明想看一国一年内生产活动的总量,定义GDP是一国在一定时期内最终产品的总价值。(内涵)最终产品是本期生产本期不再投入生产使用的产品,消费、投资、出口产品。(外延)跟踪所有产品的使用去向,再核算其价值是不可能的。部门增加值核算方法(计算方法)棉花纱布 印染衣服300350460580 880部门增加值30050110120 300最终产品的总价值=880部门增加值合计=300+50+110+120+300=880时间、空间、计量单位第二章 统计数据的搜集、整理和显示第一节 统计数据的搜集一、统计调查方式统计报表制度
4、、普查、抽样调查、典型调查、重点调查例例2.1、一批钢材,抽样测试其抗张力,随机抽取76个样本观察值如下:(单位:kg/cm2)41.0 37.0 33.0 44.2 30.5 27.0 45.0 28.5 40.6 34.831.2 33.5 38.5 41.5 43.0 45.5 42.5 39.0 36.2 27.538.8 35.5 32.5 29.5 32.6 34.5 37.5 39.5 35.8 29.142.8 45.1 42.8 45.8 39.8 37.2 33.8 31.2 31.5 29.529.0 35.2 37.8 41.2 43.8 48.0 43.6 41.8
5、44.5 36.536.6 34.8 31.0 32.0 33.5 37.4 40.8 44.7 40.0 41.540.2 41.3 38.8 34.1 31.8 34.6 38.3 41.3 44.2 37.130.0 35.2 37.5 40.5 38.1 37.3第二节 数据的整理一、统计分组1、统计分组是将统计总体按照一定标志区分成若干个组成部分的一种统计分析方法。2、两点注意:有时不易确定组与组之间的界限;穷尽原则、互斥原则。二、频数分布数列1、统计分组后,每个组分配的总体单位数称为频数或次数,频数/总体单位总数=频率。2、意义整理了杂乱无章的数据,同时显示出一批数的分布情况,是数
6、理统计学中随机变量及其概论分布概念在实际中的应用。3、分类:按分组标志的不同,分为:品质数列 单项数列:一个变量值是一个组变量数列 组距数列:两个变量值构成的区间是一个组 三、组距分布数列的编制方法第一步,排序后,极差=max-min第二步,确定组数、组距。组数 k=1+3.32lgn(参考)组距=(max-min)/组数第三步,组中值。组中值=(下限+上限)/2四、累计频数分布数列1、各组频数向上、向下累计形成的数列。2、在经济学中的应用。洛伦茨曲线基尼系数=A/(A+B)第三节 数据显示统计表和统计图一、统计表1、表的格式:横行标题:对象(总体(常以年份形式表示)、总体分组、总体各单位)纵
7、栏标题:统计指标交叉部分:指标值2、注意事项:数据居中,小数点对齐左右不封口;表下面注明资料来源。二、统计图组别组别4548424539423639333630332730Frequency20100支付方式信用卡个人支票现金第三章 统计数据的描述分析第一节 集中趋势分析集中趋势是数据分布的中心,描述集中趋势的指标有算术平均数、中位数、众数等。某单位某单位80个工人生产的零个工人生产的零 单位:个65 78 88 65 58 76 69 66 80 64 77 78 60 65 85 74 73 65 66 79 74 85 59 69 60 87 85 86 64 93 76 62 91 4
8、9 74 78 75 79 86 68 87 97 92 82 66 94 75 56 85 77 67 89 78 79 88 83 73 69 84 95 55 79 77 58 80 68 77 87 70 78 79 61 47 69 89 96 66 76 81 99Min=47 max=99一、算术平均数(均值)1、将一批数累加起来,除以数据的个数,即为算术平均数。2、分为简单算术平均数和加权算术平均数nxXnii1kiikiiikkkffxffffxfxfxX11212211nxXnii1例、某单位80工人一周生产零件数。1、简单算术平均数2、加权算术平均数)(49.758099
9、61.80651个nxXnii7580600011212211kiikiiikkkffxffffxfxfxX3、算术平均数与数学期望对于离散型随机变量X,设它的概率密度函数P(Xi)为,则的数学期望为对于连续型随机变量X,设其概率密度函数为f(X),则的数学期望为iiiPXXE)(iiiXPXXE)()(iiiXPXXE)()(iiiXPXXE)()(iiiXPXXE)()(dXXXfXE)()(4、算术平均数的缺陷10 15 20 25 70去掉70后,28X5.17X二、众数(M0)1、众数是指一组变量值中出现次数最多的变量值。2、众数的确定未分组资料,M0就是出现次数最多的变量值。上例中
10、,78、79各出现5次,都是M0数据分布是双峰的。分组资料:在等距分组的情况下,频数最多的组是众数组,在该组内确定众数。0000000000000000)()()()(11101110MMMMMMMMMMMMMMMMdffffffUMdffffffLM例、上例中众数组是第3组,7410)1925()2125(192580)()(7410)1925()2125(212570)()(80,70,10,19,250000000000000000000000111011101,211MMMMMMMMMMMMMMMMMMMMMMdffffffUMdffffffLMULdfff三、中位数及分位数1、中位数
11、把一批数按照从小到大的顺序排列,处于数列中点的变量值就是Me确定方法未分组资料:(n+1)/2中位数的位置。前例Me=77分组资料:根据向上或向下累计频数分布数列,按照 确定中位数所在的组,然后确定。2fMeMMMeMeMMMedfSfUMdfSfLMeeeeee11228.74102527408028.741025284070225,10,27,28,80,70,4028021111MeMMMeMeMMMeMMeMMMMdfSfUMdfSfLMfdSSULfeeeeeeeeeee2、百分位数把数据按从小到大的顺序排列后,第P百分位数是指有P%的值小于或等于它,而有(100-P)%的值大于或等
12、于它。确定方法。i=(P/100)n就是第P百分位数的位置。其中最常用的是四分位数。即把数据分成四个部分,每个部分包括1/4数值。第二节第二节 离中趋势分析离中趋势分析一、离中趋势一、离中趋势1、离中趋势是数据分布的又一特征,它表明变量值的差异或离散程度。2、意义:首先,可以衡量算术平均数的代表性。例:均值都为150的两组数 50,100,150,200,250 100,125,150,175,200其次,进行产品质量管理和决策。3、离中趋势测度经常用到的指标有:极差、方差和标准差、四分位差等,它们也被称为变异指标。二、极差二、极差1、极差也称为全距,是一组变量中最大值与最小值的离差,表明变量
13、值变动的范围。用R表示极差,其计算公式是:2、缺点:易受极端值的影响。maxminRxx三、四分位差三、四分位差1、四分位差用数列中第3/4位次与1/4位次的变量值之差除以2来表示。2、意义:剔除了极端值,说明50%数据分布的范围;与中位数配合说明数据分布是否对称。若分布对称,则Q2-Q1=Q3-Q2=(Q3-Q1)/2若不相等,则是非对称的。22575213百分位数第百分位数第QQQ四、平均差四、平均差1、平均差是指变量值与其算术平均数的离差绝对值的算术平均数,用符号AD表示。计算公式:2、优缺点1.niixXADn五、方差与标准差五、方差与标准差1、方差与标准差是测定离中趋势最常用的指标。
14、标准差是方差的平方根,也称均方差。2、计算公式:样本方差和标准差要除以n-1,才是总体的无偏估计。3、标准差系数221()niixXn221()niiixXfnS100%VX第三节第三节 偏度和峰度分析偏度和峰度分析一、矩的概念1、矩是力学概念,用来表示力和力臂对中心的关系。统计学中借用这一概念讨论随机变量的分布特征。2、统计学中,将矩定义为原点矩和中心矩。原点矩的定义是:k为整数,称为k阶原点矩1nkiikxndXXfXPXXEkiiik)()(中心矩的定义是:1()nkiikxXUndXXfXEXPXEXXEXEkiikik)()()()(3、中心矩的两个重要性质:分布对称时,奇数阶中心矩
15、恒为零;当分布为正态分布时,偶数阶中心矩有66442222215,3,)12(.531!)!12(VVVkkVkkk二、偏态1、分布的偏态就是分布不对称的方向和程2、它的测量主要是两种方法,一种是矩法,二是Pearson偏态系数。vPearson偏态系数以平均数与众数之差除以标准差来衡量偏斜程度,用SK表示。其计算公式为:v当SK=0时,呈对称分布;当SK0时,分布是右偏(正偏)的;当SK0时,表示频数分布比正态分布更集中,分布呈尖峰状态;0时表示频数分布比正态分布更分散,分布呈平坦峰。v例、前例数据的峰度分析 344U19.235000)(4424mkffXxmiii第四章 参数估计第一节
16、随机变量与概论分布随机现象随机变量概论分布离散型和连续型随机变量第二节 统计量与抽样分布一、几个基本概念1、总体和样本研究对象的全体称为总体,组成总体的每个基本单元称为个体;把从总体中按照随机原则抽出的个体组成的小群体称为样本,所包含的个体总数称为样本容量。总体=某项数量指标取值的全体=随机变量一个容量为n的样本就是一个n维随机变量其中 相互独立,与总体 具有相同的概率分布。),(21nXXXiXX2、统计量与抽样分布参数估计统计量样本函数称为统计量。设是来自总体 的一个样本,是 的函数,若 是连续函数且其中不含任何未知参数,则称 是一个统计量。),(21nXXX),(21nXXXhnXXX,
17、21h),(21nXXXhX抽样分布统计量的概论分布为抽样分布,总体的分布已知时,统计量的分布是确定的。二、三大推断分布(一)分布1、设 是来自总体(0,1)的一个样本,则称统计量服从自由度为n的 分布,记为 。此处,自由度是指包含的独立变量的个数。2nXXX,21N222212nXXX)(22n22、性质:(1)设 ,且 独立,则 ,即分布具有可加性。)(),(22221221nn2221,)(2122221nn 2(2)分位点若对于给定的 ,0 1,存在使得则称点 为 分布的上 分位点,如图所示。)(222)()(ndxxfnP)(2n2(二)t分布1、设XN(0,1),Yx2(n),且X
18、,Y相互独立,则称随机变量为服从自由度为n的t分布,记Tt(n)。t分布又称学生氏(student)分布。nYXT/2、性质关于y轴呈对称分布;当 时,近似于N(0,1)分布。分位点对于给定的,0 1,称满足的点 为t分布的分位点。n)()()(ntdttfnttP)(nt)()(1ntnt(三)F分布1、设UX2(n1),VX2(n2),且U、V相互独立,则服从自由度为(n1,n2)的F分布,记为2、性质F分布是非对称的21/nVnUF),(21nnFF分位点对于给定的,0 30),同(1),可以用样本方差替代总体方差。niiXnX11),(2nN)1(ntnSXt2、样本方差s2的抽样分布
19、),(2nN)1()1(2222nsnx3、两样本均值差的抽样分布(1)已知(2)未知,但两者相等),(2xxNXX2xS),(2yyNYY2yS2x2y)1,0()()(22NmnYXUyxyx2y)2(11)()(mntmnSYXtWYX2)1()1(22mnSmSnSyxW2x(3)当不知总体的分布形式时,n很大时,由中心极限定理推,同(1),用样本方差替代总体方差。4、两总体方差比)1,1(2222mnFSSFyyxx5、样本成数的抽样分布),(nPQPNp第二节 点估计一、点估计1、点估计是指根据总体参数的性质构造一个统计量,然后由样本资料计算出统计量的值,并直接作为相应的总体参数值
展开阅读全文