常系数线性常微分方程-共49页PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《常系数线性常微分方程-共49页PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 系数 线性 微分方程 49 PPT 课件
- 资源描述:
-
1、常系数高阶 线性微分方程 一.常系数线性齐次微分方程二.常系数线性非齐次微分方程 第六章 常系数 齐次线性微分方程 基本思路:求解常系数线性齐次微分方程 求特征方程(代数方程)之根转化 第六章 二阶常系数齐次线性微分方程:),(0为常数qpyqypy xrey 和它的导数只差常数因子,代入得0)(2xre qprr02qrpr称为微分方程的特征方程特征方程,1.当042qp时,有两个相异实根,21r,r方程有两个线性无关的特解:,11xrey,22xrey 因此方程的通解为xrxreCeCy2121(r 为待定常数),xrer函数为常数时因为,所以令的解为 则微分其根称为特征根特征根.2.当0
2、42qp时,特征方程有两个相等实根21rr 则微分方程有一个特解)(12xuyy 设另一特解(u(x)待定)代入方程得:1xre)(1urup0uq)2(211ururu 1r注意是特征方程的重根0 u取 u=x,则得,12xrexy 因此原方程的通解为xrexCCy1)(21,2p.11xrey)(1xuexr0)()2(1211 uqrprupru3.当042qp时,特征方程有一对共轭复根irir21,这时原方程有两个复数解:xiey)(1)sin(cosxixexxiey)(2)sin(cosxixex 利用解的叠加原理,得原方程的线性无关特解:)(21211yyy)(21212yyyi
3、xexcosxexsin因此原方程的通解为)sincos(21xCxCeyx小结小结:),(0为常数qpyqypy,02qrpr特征方程:xrxreCeCy212121,:rr特征根21rr 实根 221prrxrexCCy1)(21ir,21)sincos(21xCxCeyx特 征 根通 解以上结论可推广到高阶常系数线性微分方程.若特征方程含 k 重复根,ir若特征方程含 k 重实根 r,则其通解中必含对应项xrkkexCxCC)(121112()cosxkkeCC xC xxsin)(121xxDxDDkk则其通解中必含对应项)(01)1(1)(均为常数knnnnayayayay特征方程:
4、0111nnnnararar),(均为任意常数以上iiDC例例1.032 yyy求方程的通解.解解:特征方程,0322rr特征根:,3,121rr因此原方程的通解为xxeCeCy321例例2.求解初值问题0dd2dd22ststs,40ts20ddtts解解:特征方程0122rr有重根,121 rr因此原方程的通解为tetCCs)(21利用初始条件得,41C于是所求初值问题的解为tets)24(22C例例3.052)4(yyy求方程的通解.解解:特征方程,052234rrr特征根:irrr21,04,321因此原方程通解为xCCy21)2sin2cos(43xCxCex例例4.0)4()5(y
5、y解方程解解:特征方程:,045rr特征根:1,054321rrrrr原方程通解:1CyxC223xC34xCxeC5(不难看出,原方程有特解),132xexxx02)(22222rr例例5.)0(0dd444wxw解方程解解:特征方程:44r即0)2)(2(2222rrrr其根为),1(22,1ir)1(24,3ir方程通解:xew2)2sin2cos(21xCxCxe2)2sin2cos(43xCxC例例6.02)4(yyy解方程解解:特征方程:01224rr0)1(22r即特征根为,2,1irir4,3则方程通解:xxCCycos)(31xxCCsin)(42内容小结内容小结),(0为常
6、数qpyqypy 特征根:21,rr(1)当时,通解为xrxreCeCy212121rr(2)当时,通解为xrexCCy1)(2121rr(3)当时,通解为)sincos(21xCxCeyxir2,1可推广到高阶常系数线性齐次方程求通解.思考与练习思考与练习 求方程0 yay的通解.答案答案:0a通解为xCCy21:0a通解为xaCxaCysincos21:0a通解为xaxaeCeCy21思考题思考题,2cos,2,321xyexyeyxx求一个以xy2sin34为特解的 4 阶常系数线性齐次微分方程,并求其通解.解解:根据给定的特解知特征方程有根:,121 rrir24,3因此特征方程为2)
7、1(r0)4(2r即04852234rrrr04852)4(yyyyy故所求方程为其通解为xCxCexCCyx2sin2cos)(4321常系数非齐次线性微分方程 型)()(xPexfmxxxPexflxcos)()(型sin)(xxPn一、一、第六章)(xfyqypy),(为常数qp二阶常系数线性非齐次微分方程:根据解的结构定理,其通解为Yy*y非齐次方程特解齐次方程通解求特解的方法根据 f(x)的特殊形式,*y给出特解的待定形式,代入原方程比较两端表达式以确定待定系数.待定系数法待定系数法)(xQex)()2(xQp)()(2xQqp)(xPemx一、一、型)()(xPexfmx 为实数,
8、)(xPm设特解为,)(*xQeyx其中 为待定多项式,)(xQ)()(*xQxQeyx)()(2)(*2xQxQxQeyx 代入原方程,得)(xQ(1)若 不是特征方程的根,02qp即则取),(xQm从而得到特解形式为.)(*xQeymx)()2(xQp)()(2xQqp)(xPm为 m 次多项式.Q(x)为 m 次待定系数多项式(2)若 是特征方程的单根,02qp,02 p)(xQ则为m 次多项式,故特解形式为xmexQxy)(*(3)若 是特征方程的重根,02qp,02 p)(xQ 则是 m 次多项式,故特解形式为xmexQxy)(*2小结小结 对方程,)2,1,0()(*kexQxyx
9、mk此结论可推广到高阶常系数线性微分方程.)(xQ)()2(xQp)(xPm)()(2xQqp即即当 是特征方程的 k 重根 时,可设特解例例1.1332 xyyy求方程的一个特解.解解:本题而特征方程为,0322 rr不是特征方程的根.设所求特解为,*10bxby代入方程:13233010 xbbxb比较系数,得330 b13210bb31,110bb于是所求特解为.31*xy0,0例例2.xexyyy265 求方程的通解.解解:本题特征方程为,0652 rr其根为对应齐次方程的通解为xxeCeCY3221设非齐次方程特解为xebxbxy210)(*比较系数,得120 b0210bb1,21
10、10bb因此特解为.)1(*221xexxy3,221rr代入方程得xbbxb01022所求通解为xxeCeCy3221.)(2221xexx,2例例3.求解定解问题 0)0()0()0(123yyyyyy解解:本题特征方程为,02323rrr其根为设非齐次方程特解为,*xby代入方程得,12b故,*21xy0321CCC21322CC2,1,0321rrr故对应齐次方程通解为1CY xeC2xeC23原方程通解为x211Cy xeC2xeC23由初始条件得0432CC,0于是所求解为xeeyxx2141432解得)423(412xxeex41 143321CCC二、二、型xxPxxPexfn
11、lxsin)(cos)()(ximexPxf)()()(ximexP)()(第二步第二步 求出如下两个方程的特解ximexPyqypy)()(yqypy分析思路:第一步第一步 将 f(x)转化为第三步第三步 利用叠加原理求出原方程的特解第四步第四步 分析原方程特解的特点ximexP)()(第一步第一步 利用欧拉公式将 f(x)变形xexf)(ixPxPnl2)(2)(xie)(ixPxPnl2)(2)(xie)(ximexPxf)()()(ximexP)()(ximexP)()(ximexP)()(则令,maxlnm)(xPl2xixiee)(xPnieexixi2 第二步第二步 求如下两方程
展开阅读全文