2020年最新版初一七年级数学上下册知识点归纳总结(可编辑).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年最新版初一七年级数学上下册知识点归纳总结(可编辑).docx》由用户(卧龙小子)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 最新版 初一 年级 数学 上下册 知识点 归纳 总结 编辑 下载 _中考其它_中考复习_数学_初中
- 资源描述:
-
1、 二元一次方程组一元一次不等式(组)整式的乘除代数初步知识有理数(初一下学期)初一数学知识点总结初一上学期几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)整式的加减一元一次方程几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题) 用运算符号“ ”连接数及表示数的字母的式子称为代数式。注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。1、代数式:(1)数与字母相乘,或字母与字母相乘通常使用“ ” 乘,或省略不写。(2)数与数相乘,仍应使用“”乘,不用“ ”乘,也不能省略乘号。(3
2、)数与字母相乘时,一般在结果中把数写在字母前2、列代数式的几个注意事项:面,如a5应写成5a。代数初步知识(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .(1)a与b的平方差是:a2-b2; a与b差的平方是:(a-b)2。(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。3、几个重要的代数式:(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n
3、、n+1。(4)若b0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 。 (1)凡能写成(a、b都是整数且a0)形式的数,都是有理数。正整数、 0、负整数统称整数;正分数、 负分数统称分数;整数和分数 统称有理数。(注意:0即不是正数,也不是 负数;-a不一定是负数,+a也不一定是正数;p不是有理数)1、有理数:(2)有理数中,1、0、-1是三个特殊的数,它 们有自己的特性; 这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性。(3)自然数是指0和正整数;a0,则a是正数;a0,则a是负数;a0,则a是正数或0(即a是非负数);a0,则a是负数或0
4、(即a是非正数)。数轴是规定了原点、正方向、 单位长度的一条直线.2、数轴:(1)只有符号不同的两个数,我 们说其中一个是另一个的相反数; 0的相反数还是0。(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0时,则a+b=0;即a、b互为相反数。3、相反数:4、绝对值:5、有理数比大小:6、互为倒数:有理数7、有理数加法法 则:8、有理数加法的运算律:9、有理数减法法 则:10、有理数乘法法 则:11、有理数乘法的运算律:12、有理数除法法 则:13、有理数乘方的法 则:14、乘方的定义:15、科学记数法:16、近似数的精确位:
5、17、有效数字:18、混合运算法 则:19、特殊值法: 1、有理数:2、数轴:3、相反数:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。(2)绝对值可表示为|a|。4、绝对值:(3)|a|是重要的非负数,即|a|0。(注意:|a|b|=|ab|)。(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切 负数;5、有理数比大小:(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右 边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.乘积为1的两个数互为倒数。
6、有理数6、互为倒数:(注意:0没有倒数;若 a、b0,那么的倒数是;倒数是本身的数是 1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。7、有理数加法法 则:8、有理数加法的运算律:9、有理数减法法 则:10、有理数乘法法 则:11、有理数乘法的运算律:12、有理数除法法 则:13、有理数乘方的法 则:14、乘方的定义:15、科学记数法:16、近似数的精确位:17、有效数字:18、混合运算法 则:19、特殊值法: 1、有理数:2、数轴:3、相反数:4、绝对值:5、有理数比大小:6、互为倒数:(1)同号两数相加,取相同的符号,并把 绝对值相加。(2)异号两数相加,取 绝对值较大
7、的符号,并用 较大的绝对值减去较小的绝对值。(3)一个数与0相加,仍得这个数。7、有理数加法法 则:(1)加法的交换律:a+b=b+a。8、有理数加法的运算律:9、有理数减法法 则:(2)加法的结合律:(a+b)+c=a+(b+c)。减去一个数,等于加上 这个数的相反数;即a-b=a+(-b)。(1)两数相乘,同号 为正,异号为负,并把绝对值相乘。(2)任何数同零相乘都得零。有理数10、有理数乘法法 则:(3)几个数相乘,有一个因式 为零,积为零;各个因式都不 为零,积的符号由负因式的个数决定。(1)乘法的交换律:ab=ba。11、有理数乘法的运算律:(2)乘法的结合律:(ab)c=a(bc)
8、。(3)乘法的分配律:a(b+c)=ab+ac。12、有理数除法法 则:13、有理数乘方的法 则:14、乘方的定义:15、科学记数法:16、近似数的精确位:17、有效数字:除以一个数等于乘以 这个数的倒数。(注意:零不能做除数)18、混合运算法 则:19、特殊值法: 1、有理数:2、数轴:3、相反数:4、绝对值:5、有理数比大小:6、互为倒数:7、有理数加法法 则:8、有理数加法的运算律:9、有理数减法法 则:10、有理数乘法法 则:11、有理数乘法的运算律:12、有理数除法法 则:有理数(1)正数的任何次 幂都是正数;13、有理数乘方的法 则:(2)负数的奇次幂是负数;负数的偶次幂是正数。注
9、意:当 n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n ,当n为正偶数时: (-a)n =an(1)求相同因式 积的运算,叫做乘方。或 (a-b)n=(b-a)n。(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的 结果叫做幂。(3)a2是重要的非 负数,即a20;若a2+|b|=0,则a=0,b=0。(4)底数的小数点移 动一位,平方数的小数点移 动二位。14、乘方的定 义:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数, 这种记数法叫科学记数法。15、科学记数法:16、近似数的精确位:17、有效数字:一个近似数,四舍五入到那一位,就 说
10、这个近似数的精确到那一位。从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫 这个近似数的有效数字。先乘方,后乘除,最后加减。注意:怎 样算简单,怎样算准确,是数学 计算的最重要的原则。18、混合运算法 则:19、特殊值法:是用符合题目要求的数代入,并 验证题设成立而进行猜想的一种方法 ,但不能用于 证明。 在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。1、单项式:单项式中不为零的数字因数,叫单项式的数字系2、单项式的系数与次数:数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。3、多项式:几个单项式的和叫
11、多项式。多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。4、多项式的项数与次数:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。5、整式:整式的加减所含字母相同,并且相同字母的指数也相同的单项式是同类项。6、同类项:7、合并同类项法则:8、去(添)括号法则:系数相加,字母与字母的指数不变。去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。整式的加减,实际上是在去括号的基础上
12、,把多项式的同类项合并。9、整式的加减:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。10、多项式的升幂和降幂排列: 用“=”号连接而成的式子叫等式。注意:“等量就能代入”。1、等式与等量:2、等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。3、方程:含未知数的等式,叫方程。使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。4、方程的解:改变符号后
13、,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。5、移项:只含有一个未知数,并且未知数的次数是1,并且6、一元一次方程:含未知数项的系数不是零的整式方程是一元一次方程。7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。8、一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a0)。9、一元一次方程解法的一般步 骤:整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解)。(1)读题分析法:多用于“和,差,倍,分问题”。一元一次方程仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合, 为,完成,增加,减少,
展开阅读全文