2020届湖北名师联盟高三上学期第二次月考精编仿真金卷数学(理)试题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020届湖北名师联盟高三上学期第二次月考精编仿真金卷数学(理)试题.doc》由用户(叶思起)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 湖北 名师 联盟 高三上 学期 第二次 月考 精编 真金 数学 试题 下载 _试题试卷_理综_高中
- 资源描述:
-
1、此卷只装订不密封班级 姓名 准考证号 考场号 座位号 2019-2020学年上学期高三第二次月考精编仿真金卷理科数学注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求
2、的1已知全集,集合,则( )ABCD2在复平面内,复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限3已知双曲线的焦距为,且两条渐近线互相垂直,则该双曲线的实轴长为( )ABCD4已知变量,满足约束条件,则目标函数的最小值为( )ABCD5将函数的图像向左平移个单位,得到函数的图像,则下列关于函数的说法正确的是( )A是奇函数B的周期是C的图像关于直线对称D的图像关于点对称6中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如右图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万位用纵式表示,十位、千位、
3、十万位用横式表示,则可用算筹表示为( )ABCD7已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )ABCD8德国大数学家高斯年少成名,被誉为数学届的王子,岁的高斯得到了一个数学史上非常重要的结论,就是正十七边形尺规作图之理论与方法,在其年幼时,对的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法现有函数,则等于( )ABCD9在中,角,的对边分别为,若的面积,且,则( )ABCD10函数的图象大致为( )ABCD11设为坐标原点,是以为焦点的抛物线上任意一点,是线段
4、上的点,且,则直线的斜率的最大值为( )ABCD12已知,若方程有唯一解,则实数的取值范围是( )ABCD第卷二、填空题:本大题共4小题,每小题5分13已知平面向量,若,则_14的展开式中,含项的系数为_(用数字作答)15若圆,直线过点且与直线垂直,则直线截圆所得的弦长为_16瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点顶点与垂心连线的中点构成的三角形称为的欧拉三角形如图,是的欧拉三角形(为的垂心)已知,若在内部随机选取一点,则此点取自阴影部分的概率为_三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤17(12分)已知数列的前项和,满足,记(1)求,
5、;(2)判断数列是否为等比数列,并说明理由;(3)求数列的通项公式18(12分)如图,在直三棱柱中,点,分别为和的中点(1)证明:平面;(2)求与平面所成角的正弦值19(12分)已知点为椭圆上任意一点,直线与圆交于,两点,点为椭圆的左焦点(1)求椭圆的离心率及左焦点的坐标;(2)求证:直线与椭圆相切;(3)判断是否为定值,并说明理由20(12分)已知函数,(1)当时,求的单调区间;(2)若函数存在两个极值点,求的取值范围21(12分)有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学
展开阅读全文