书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型免疫算法课件.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:3117300
  • 上传时间:2022-07-15
  • 格式:PPTX
  • 页数:33
  • 大小:591.54KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《免疫算法课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    免疫 算法 课件
    资源描述:

    1、O在生物科学领域,人们对进化、遗传和免疫等自然现象已在生物科学领域,人们对进化、遗传和免疫等自然现象已经进行了广泛而深入的研究经进行了广泛而深入的研究 ;O进化算法是建立在模仿生物遗传与自然选择基础上的一种进化算法是建立在模仿生物遗传与自然选择基础上的一种并行优化算法,其性能优异、应用广泛;并行优化算法,其性能优异、应用广泛;O进化算子在为每个个体提供了进化机会的同时,也无可避进化算子在为每个个体提供了进化机会的同时,也无可避免地产生了退化的可能;免地产生了退化的可能;O大多数待求问题有可以利用的先验知识或特征信息,故可大多数待求问题有可以利用的先验知识或特征信息,故可以利用这些信息来抑制进化

    2、过程中的退化现象;以利用这些信息来抑制进化过程中的退化现象;O生物免疫理论为改进原有算法的性能,建立集进化与免疫生物免疫理论为改进原有算法的性能,建立集进化与免疫机制于一体的新型全局并行算法奠定了基础机制于一体的新型全局并行算法奠定了基础。OO 免疫学习算法免疫学习算法非选择算法(非选择算法(Forrest););免疫学习算法(免疫学习算法(Hunt&Cooke););免疫遗传算法(免疫遗传算法(Chun););免疫免疫Agent算法(算法(Ishida););免疫网络调节算法(免疫网络调节算法(Wang&Cao););免疫进化算法(免疫进化算法(Jiao&Wang). .OO自动控制OO故障

    3、诊断OO模式识别OO图象识别OO优化设计OO机器学习OO网络安全PID型免疫反馈控制器(型免疫反馈控制器( Takahashi ););机器人控制(机器人控制( Mitsumoto, Ishiguro, Lee););控制系统的设计(控制系统的设计( Ishida ););复杂动态行为建模和自适应控制(复杂动态行为建模和自适应控制(Kumak););倒立摆的控制(倒立摆的控制( Bersini )。)。基于相关识别特性的免疫网络模型基于相关识别特性的免疫网络模型用于故障诊断的方法(用于故障诊断的方法(Ishida););通过构造大规模独特型免疫网络来通过构造大规模独特型免疫网络来建立用于在线服

    4、务的故障诊断系统建立用于在线服务的故障诊断系统(Ishiguru)。)。Hunt等人开发了一种具有学等人开发了一种具有学习能力的人工免疫系统并用于模习能力的人工免疫系统并用于模式识别。式识别。Gilbert等人采用免疫网络模等人采用免疫网络模型设计了一种内容可访的自动联型设计了一种内容可访的自动联想记忆系统并用于图像识别。想记忆系统并用于图像识别。永磁同步电动机的参数修正的优化设计;永磁同步电动机的参数修正的优化设计;电磁设备的外形优化;电磁设备的外形优化;VLSI印刷线路板的布线优化设计;印刷线路板的布线优化设计;函数测试;函数测试;旅行商问题的求解;旅行商问题的求解;约束搜索优化问题和多判

    5、据设计问题约束搜索优化问题和多判据设计问题;数据检测(数据检测(Forrest ););病毒检测(病毒检测( Kephart););UNIX过程监控过程监控( Forrest)。n在生物自然界中,免疫现象普遍存在,并对物种的在生物自然界中,免疫现象普遍存在,并对物种的生存与生存与繁衍繁衍发挥着重要的作用;发挥着重要的作用;n生物的免疫功能主要是由参与免疫反应的细胞或由其构成生物的免疫功能主要是由参与免疫反应的细胞或由其构成的器官来完成的;的器官来完成的;n生物免疫系统是通过自我识别、相互刺激与制约而构成了生物免疫系统是通过自我识别、相互刺激与制约而构成了一个一个 动态平衡的网络结构动态平衡的网

    6、络结构 。OO 抗原是指能够刺激和诱导机体的免疫系统使其产生免疫应答,并能与相应的免疫应答产物在体内或体外发生特异性反应的物质。OO 抗体是指免疫系统受抗原刺激后,免疫细胞转化为浆细胞并产生能与抗原发生特异性结合的免疫球蛋白,该免疫球蛋白即为抗体。OO免疫识别OO免疫应答OO免疫耐受OO免疫记忆OO免疫调节方法:方法:OO 传统进化算法是在一定发生概率的条件下,随机地、没有指导地迭代搜索,因此它们在为群体中的个体提供了进化机会的同时,也无可避免地产生了退化的可能。OO 每一个待求的实际问题都会有自身一些基本的、显而易见的特征信息或知识。然而进化算法中的交叉和变异算子在求解问题时,操作的可变程度

    7、较小。OO抗原所有可能错误的基因,即非最佳个体的基因。OO 疫苗根据进化环境或待求问题的先验知识,所得到的对最佳个体基因的估计。OO 抗体根据疫苗修正某个个体的基因所得到的新个体。免疫算子有两种类型:免疫算子有两种类型:全免疫全免疫 非特异性免疫非特异性免疫目标免疫目标免疫 特异性免疫特异性免疫即:群体中的每个个体在进化算子作用后,对其即:群体中的每个个体在进化算子作用后,对其每一环节都进行一次免疫操作的免疫类型;每一环节都进行一次免疫操作的免疫类型;即:在进行了进化操作后,经过一定的判断,个即:在进行了进化操作后,经过一定的判断,个体仅在作用点处发生免疫反应的一种类型。体仅在作用点处发生免疫

    8、反应的一种类型。OO首先,对待求问题进行具体分析,从中提取出首先,对待求问题进行具体分析,从中提取出 最基本的特征信息最基本的特征信息;OO 其次,对此特征信息进行处理,以将其转化为其次,对此特征信息进行处理,以将其转化为求解问题的一种方案;求解问题的一种方案;OO最后,将此方案以适当的形式转化成最后,将此方案以适当的形式转化成免疫算子免疫算子 以实施具体的操作。以实施具体的操作。OO 算法中的免疫思想主要是在合理提取疫苗算法中的免疫思想主要是在合理提取疫苗的基础上,通过免疫算子来实现的;的基础上,通过免疫算子来实现的;OO 免疫算子由免疫算子由 接种疫苗接种疫苗 和和 免疫选择免疫选择 两个

    9、两个操作完成的。操作完成的。为了防止群体为了防止群体的退化。的退化。为了提高个体为了提高个体的适应度。的适应度。设个体设个体x,给其接种疫苗是指按照先验知给其接种疫苗是指按照先验知识来修改识来修改x的某些基因位上的的某些基因位上的基因或其分量基因或其分量,使所得个体使所得个体以较大的概率具有更高的适应度以较大的概率具有更高的适应度。疫苗疫苗 是从先验知识中提炼出来的,它所含的是从先验知识中提炼出来的,它所含的信息量及其准确性对算法性能的发挥起着重信息量及其准确性对算法性能的发挥起着重要的作用。要的作用。这一操作一般分两步完成:第一步是这一操作一般分两步完成:第一步是免疫检免疫检测测 ,即对接种

    10、了疫苗的个体进行检测,若其适,即对接种了疫苗的个体进行检测,若其适应度仍不如父代,则该个体将被父代中所对应的应度仍不如父代,则该个体将被父代中所对应的个体所取代;第二步是个体所取代;第二步是 退火选择退火选择 ,即在目前的,即在目前的子代群体中以右边所示概率子代群体中以右边所示概率P xeeif xTf xTinikik()()()10选择个体进入新的父代群体。选择个体进入新的父代群体。在免疫策略中,仅有免疫检在免疫策略中,仅有免疫检测而没有退火选择。测而没有退火选择。n免疫算法免疫算法n随机产生初始父代种群随机产生初始父代种群A1 ,根据先验知识抽取疫苗;根据先验知识抽取疫苗;n若当前群体中

    11、包含最佳个体,则算法停止运行并输出若当前群体中包含最佳个体,则算法停止运行并输出结果;否则,继续;结果;否则,继续;n对当前第对当前第k代父本种群代父本种群Ak进行交叉操作,得到种群进行交叉操作,得到种群Bk;n对对Bk进行变异操作,得到种群进行变异操作,得到种群Ck;n对对Ck进行接种疫苗操作,得到种群进行接种疫苗操作,得到种群Dk;n对对Dk进行免疫选择操作,得到新一代父本进行免疫选择操作,得到新一代父本Ak+1,转至转至第二步。第二步。ABCDAkkkkk交叉变异接种疫苗免疫选择 1状态转移过程示意图:状态转移过程示意图:定定 理:免疫算法是收敛的。理:免疫算法是收敛的。定定 义义:如果

    12、对于任意的初始分布均有如果对于任意的初始分布均有则称算法收敛。则称算法收敛。lim*kkisSP Ai1具体分析待求问题,搜集特征信息。具体分析待求问题,搜集特征信息。以以TSP问题为例,通过具体分析可问题为例,通过具体分析可以得出相邻两两城市之间的最短路径即以得出相邻两两城市之间的最短路径即为求解该问题时可以利用的一种疫苗。为求解该问题时可以利用的一种疫苗。TSP问题是旅问题是旅行商问题的简称。行商问题的简称。即一个商人从某即一个商人从某一城市出发,要一城市出发,要遍历所有目标城遍历所有目标城市,其中每个城市,其中每个城市必须而且只须市必须而且只须访问一次。所要访问一次。所要研究的问题是在研

    13、究的问题是在所有可能的路径所有可能的路径中寻找一条路程最短的路线。该问题是一个典型的中寻找一条路程最短的路线。该问题是一个典型的NP问题,问题,即随着规模的增加,可行解的数目将做指数级增长。即随着规模的增加,可行解的数目将做指数级增长。NjkkjjjikkiikkaaaaaaD112111NjkkjikkikkalallaDc13212111设所有与城市设所有与城市Ai距离最近的城市为距离最近的城市为Aj,进行一次如虚线所示的调整后进行一次如虚线所示的调整后,多数情况下,多数情况下, l3较较aj-1 + aj的减少量要大于的减少量要大于l1 + l2较较ai的增加量。的增加量。DDPDDPc

    14、c故:故:Begin:while (Conditions = True) 统计父代群体,确定最佳个体:统计父代群体,确定最佳个体:; 分解最佳个体,抽取免疫基因:分解最佳个体,抽取免疫基因:; 执行遗传和免疫算子操作执行遗传和免疫算子操作;endaStatistics a inkoptimalki(|, )1Hhajmjk joptimal, , ,12 020406080020406080a. 免疫抗体免疫抗体b. 最优化路径最优化路径75城市的城市的TSP问题免疫优化仿真示意图问题免疫优化仿真示意图01000200030004000020406080100当前最佳适应度当前平均适应度适应度进 化 子 代0200400600800100020406080100当前最佳适应度当前平均适应度适应度进 化 子 代a 通用遗传算法计算曲线通用遗传算法计算曲线b 免疫算法计算曲线免疫算法计算曲线050100150200250300050100150200250300350400050100150200250300050100150200250300350400a. 免疫疫苗示意图免疫疫苗示意图 b. 最优路径示意图最优路径示意图442城市的城市的TSP问题免疫优化仿真示意图问题免疫优化仿真示意图

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:免疫算法课件.pptx
    链接地址:https://www.163wenku.com/p-3117300.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库