2019届高考数学大一轮复习第八章立体几何与空间向量8.2简单几何体的表面积与体积课件(理科)北师大.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019届高考数学大一轮复习第八章立体几何与空间向量8.2简单几何体的表面积与体积课件(理科)北师大.ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 第八 立体几何 空间 向量 8.2 简单 几何体 表面积 体积 课件 理科 北师大 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、8.2简单几何体的面积与体积,第八章立体几何与空间向量,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,基础知识自主学习,1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是_ ,表面积是侧面积与底面面积之和.,知识梳理,所有侧面的,面积之和,2.圆柱、圆锥、圆台的侧面展开图及侧面积公式,2rl,rl,(r1r2)l,3.柱、锥、台、球的表面积和体积,Sh,4R2,1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.,【知识拓展】,2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球
2、的半径为R,,题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)多面体的表面积等于各个面的面积之和.()(2)锥体的体积等于底面积与高之积.()(3)球的体积之比等于半径比的平方.()(4)简单组合体的体积等于组成它的简单几何体体积的和或差.()(5)长方体既有外接球又有内切球.()(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2S.(),基础自测,1,2,4,5,6,3,题组二教材改编2.已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为 A.1 cm B.2 cm C.3 cm D. cm,1,2,4,5,6,解析,3
3、,答案,解析S表r2rlr2r2r3r212,r24,r2.,1,2,4,5,6,答案,3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_.,3,147,所以V1V2147.,解析设长方体的相邻三条棱长分别为a,b,c,,解析,题组三易错自纠4.(2017西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为 A.3 B.4C.24 D.34,解析,1,2,4,5,6,答案,3,解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.,5.(2016全国)体积为8的正方体的顶点都在同一球面上,则该球的表面积为 A.12 B. C.
4、8 D.4,1,2,4,5,6,答案,3,解析,6.(2018大连调研)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为_.,解析,1,2,4,5,6,答案,3,11,解析由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,,故剩余部分与挖去部分的体积之比为11.,题型分类深度剖析,1.(2016全国)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 ,则它的表面积是 A.17 B.18 C.20 D.28,题型一求简单几何体的表面积,自主演练,解析,答案,解析由题意知,该几何体的直观图如图所示,,2.(2017黑龙江
5、哈师大附中一模)已知某几何体的三视图如图所示,则该几何体的表面积为,答案,解析,解析由三视图可知几何体为三棱台,作出直观图如图所示.则CC平面ABC,上、下底均为等腰直角三角形,ACBC,ACBC1,ACBCCC2,,过A作ADAC于点D,过D作DEAB,则ADCC2,,简单几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.,命题点1以三视图为背景的几何体的体积典例 (2017浙江)某几何体的三视图如图所示(
6、单位:cm),则该几何体的体积(单位:cm3)是,解析,题型二求简单几何体的体积,多维探究,答案,故选A.,命题点2求简单几何体的体积典例 (2018广州调研)已知E,F分别是棱长为a的正方体ABCDA1B1C1D1的棱AA1,CC1的中点,则四棱锥C1B1EDF的体积为_.,解析,答案,解析方法一如图所示,连接A1C1,B1D1交于点O1,连接B1D,EF,过点O1作O1HB1D于点H.因为EFA1C1,且A1C1?平面B1EDF,EF平面B1EDF,所以A1C1平面B1EDF.所以C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离.易知平面B1D1D平面B1EDF,又平面B1D1
7、D平面B1EDFB1D,所以O1H平面B1EDF,所以O1H等于四棱锥C1B1EDF的高.因为B1O1HB1DD1,,方法二连接EF,B1D.设B1到平面C1EF的距离为h1,D到平面C1EF的距离为h2,,由题意得,,简单几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.,解析该几何体由一个三棱锥和一个三棱柱组合而成,直观图如图所示,,跟踪训练
展开阅读全文
链接地址:https://www.163wenku.com/p-31165.html