书签 分享 收藏 举报 版权申诉 / 4
上传文档赚钱

类型高中数学几何概型问题—5类重要题型.docx

  • 上传人(卖家):宝宝乐园
  • 文档编号:3098965
  • 上传时间:2022-07-11
  • 格式:DOCX
  • 页数:4
  • 大小:73.47KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学几何概型问题—5类重要题型.docx》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学 几何 问题 重要 题型 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、 几何概型问题5类重要题型解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A的概率计算公式:.其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率1.几何概型的两个特征:(1)试验结果有无限多;(2)每个结果的出现是等可能的事件A可以理解为区域的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关2.解决几何概型的求概率问题关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率3.用几何概型解简单试验问题的方法(1)适当选择观察角度,把问题转化为几何概型求解(2)把基本事件转化为与之对应的总体区域D.(

    2、3)把随机事件A转化为与之对应的子区域d.(4)利用几何概型概率公式计算4.均匀随机数在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率一般地利用计算机或计算器的rand()函数可以产生01之间的均匀随机数ab之间的均匀随机数的产生:利用计算机或计算器产生01之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生a,b上的均匀随机数,试验的结果是产生ab之间的任何一个实数,每一个实数都是等可能的5.均匀随机数的应用(1)用随机模拟法估计几何概率;(2)用随机模拟

    3、法计算不规则图形的面积下面举几个常见的几何概型问题.一.与长度有关的几何概型例1 如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型解 记 E:“A与C,B与D之间的距离都不小于10米”,把AB三等分,由于中间长度为30=10米,.方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样

    4、的概率模型就可以用几何概型来求解二.与面积有关的几何概型例2 如图,射箭比赛的箭靶涂有五个彩色的分环从外向内依次为白色、黑色、蓝色、红色,靶心为金色金色靶心叫“黄心”奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?思路点拨 此为几何概型,只与面积有关解 记“射中黄心”为事件B,由于中靶点随机地落在面积为的大圆内,而当中靶点落在面积为的黄心时,事件B发生,于是事件B发生的概率为.即:“射中黄心”的概率是0.01.方法技巧 事件的发生是“击中靶心”即“黄心”的面积;总面积为最大环

    5、的圆面积三.与体积有关的几何概型例3.在区间0,l上任取三个实数x.y.z,事件A=(x,y,z)| x2+y2+z21, x0,y0,z0 (1)构造出随机事件A对应的几何图形; (2)利用该图形求事件A的概率.思路点拨: 在空间直角坐标系下,要明确x2+y2+z21表示的几何图形是以原点为球心,半径r=1的球的内部事件A对应的几何图形所在位置是随机的,所以事件A的概率只与事件A对应的几何图形的体积有关,这符合几何概型的条件解:(1)A=(x,y,z)| x2+y2+z21, x0,y0,z0表示空间直角坐标系中以原点为球心,半径r=1的球的内部部分中x0,y0,z0的部分,如图所示 (2)

    6、由于x,y,z属于区间0,1,当x=y=z=1时,为正方体的一个顶点,事件A为球在正方体内的部分 .方法技巧:本例是利用几何图形的体积比来求解的几何概型,关键要明白点P(x,y,z)的集合所表示的图形从本例可以看出求试验为几何概型的概率,关键是求得事件所占区域和整个区域的几何度量,然后代入公式即可解,另外要适当选择观察角度.四.求会面问题中的概率例4 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率思路点拨 两人不论谁先到都要等迟到者40分钟,即小时设两人

    7、分别于x时和y时到达约见地点,要使两人在约定的时间范围内相见,当且仅当-x-y,因此转化成面积问题,利用几何概型求解解 设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-x-y.两人到达约见地点所有时刻(x,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)来表示因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为.方法技巧 会面的问题利用数形结合转化成面积问题的几何概型难点是把两个时间分别用x,y两个坐标表示,构成

    8、平面内的点(x,y),从而把时间是一段长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题五.均匀随机数的应用例5 利用随机模拟方法计算图中阴影部分(由曲线y= 2x与x轴、x=1围成的部分)面积 思路点拨 不规则图形的面积可用随机模拟法计算解 (1)利用计算机产生两组0,1上的随机数,a1=rand( ),b1=rand( ) (2)进行平移和伸缩变换,a=(a1-0.5)*2,b=b1*2,得到一组0,2上的均匀随机数 (3)统计试验总次数N和落在阴影内的点数N1. (4)计算频率,则即为落在阴影部分的概率的近似值 (5)利用几何概型公式得出点落在阴影部分的概率 (6)因为=,所以S=即为阴影部分的面积.方法技巧 根据几何概型计算公式,概率等于面积之比,如果概率用频率近似在不规则图形外套上一个规则图形,则不规则图形的面积近似等于规则图形面积乘以频率而频率可以通过随机模拟的方法得到,从而求得不规则图形面积的近似值

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学几何概型问题—5类重要题型.docx
    链接地址:https://www.163wenku.com/p-3098965.html
    宝宝乐园
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库