青海-教学设计及说课-圆的标准方程.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《青海-教学设计及说课-圆的标准方程.doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 青海 教学 设计 标准 方程 下载 _其他_数学_高中
- 资源描述:
-
1、圆的标准方程青海师大附中 朱永祥人教版高中数学(必修)第二册(上)教学目标(一)知识目标1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;2.理解并掌握切线方程的探求过程和方法。(二)能力目标1进一步培养学生用坐标法研究几何问题的能力; 2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力; 3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。(三)情感目标通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激
2、发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。教学重、难点(一)教学重点圆的标准方程的理解、掌握。(二)教学难点圆的标准方程的应用。教学方法选用引导探究式的教学方法。教学手段 借助多媒体进行辅助教学。教学过程.复习提问、引入课题师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹? 生:建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);写出适合某种条件p的点M的集合PM p(M);用坐标表示条件,列出方程f(x,y)=0;化简方程f(x,y)=0为最简形式。证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。多媒体
3、演示师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。给出标题师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25. 若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?生:x2+y2=r2. 师:你是怎样得到的?(引导启发)圆上的点满足什么条件?生:圆上的任一点到圆心的距离等于半径。即 C r 即:(x-a)2+(y-b)2= r2.讲授新课、尝试练习 ,亦即 x2+y2=r2.师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若
4、此圆的圆心移至C(a,b)点(如图),方程又是怎样的?生:此圆是到点C(a,b)的距离等于半径r的点的集合, Y M(x,y)由两点间的距离公式得师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程. O X 特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.师:圆的标准方程由哪些量决定?生:由圆心坐标(a,b)及半径r决定。师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。1、 写出下列各圆的标准方程:多媒体演示 圆心在原点,半径是3 :_ 圆心在点C(3,4),半径是:_ 经过点P(5,1),圆心在点C
5、(8,3):_2、 变式题多媒体演示 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。 答案:(x-1)2 + (y-3)2 = 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。 答案: C(a,0), r=|a|.例题分析、巩固应用师:下面我们通过例题来看看圆的标准方程的应用.例1 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。师:你打算怎样求过P点的切线方程? Y生:要求经过一点的直线方程,可利用直线的点斜式来求。师: 斜率怎样求? P生:。 师:已知条件有哪些?能利用吗?不妨结合图形来看看 (如图) O X生:切线与过切点
6、的半径垂直,故斜率互为负倒数 半径OP的斜率 K1, 所以切线的斜率 K所以所求切线方程:y-= (x-)即:x+y=17 (教师板书) 师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?生:。师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?(若看不出来,再看一例)例1/ 圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。 答案:2x+3y=13 即:2x+3y130师:发现规律了吗?(学生纷纷举手回答)生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。师:若将已知条件中圆半径改为
展开阅读全文