云南-教学设计及说课-点到直线的距离.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《云南-教学设计及说课-点到直线的距离.doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南 教学 设计 直线 距离 下载 _其他_数学_高中
- 资源描述:
-
1、教 案授课教师:云南省昆明市第三中学 李刘祥课题:点到直线的距离教材:人教版全日制普通高级中学教科书(必修)数学第二册(上)第七章第3节教学目标:(1) 至少掌握点到直线的距离公式的一种推导方法,能用公式来求点到直线距离。(2) 培养学生探究能力和由特殊到一般的研究问题的能力。(3) 认识事物(知识)之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。(4) 培养学生团队合作精神,培养学生个性品质,培养学生勇于探究的科学精神。教学重点:点到直线的距离公式推导及公式的应用教学难点:点到直线的距离公式的推导教学方法:启发引导法、讨论法学习方法:任务驱动下的研
2、究性学习教学时间:45分钟教学过程:1 .教师提出问题,引发认知冲突(约5分钟)问题:假定在直角坐标系上,已知一个定点P(x0 ,y0)和一条定直线l: Ax+By+C=0,那么如何求点P到直线l的距离d?请学生思考并回答。学生1:先过点P作直线l的垂线,垂足为Q,则|PQ|就是点P到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点Q的坐标;最后利用两点间距离公式求出|PQ|。接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):(1)求P(1 ,2)到直线l:x
3、=3的距离d;(答案:d=2)(2)求P(x0 ,y0)到直线l:By+C=0(B0)的距离d;(答案:)(3) 求P(x0 ,y0)到直线l:Ax+C=0(A0)的距离d;(答案:)(4) 求P(6 ,7)到直线l:3x-4y+5=0的距离d;(答案:d=1)(5) 求P(x0 ,y0)到直线l:Ax+By+C=0(AB0)的距离d。第(1)容易、(2)和(3)题虽然含有字母参数,但由于直线的位置比较特殊,学生不难得出正确结论;第(4)题虽然运算量较大,但按照刚才学生1回答的方法与步骤,也能顺利解出正确答案;第(5)题虽然思路清晰,但由于字母参数过多、运算量太大行不通。学生们陷入了困境。2教
4、师启发引导,学生走出困境(约8分钟)教师:根据以上5位学生的运算结果,你能得到什么启示?学生2:当直线的位置比较特殊(水平或竖直)时,点到直线的距离容易求得,而当直线是倾斜位置时则较难;含有多个字母时虽然想起来思路很自然,但具体操作起来因计算量很大而无法得出结果。P(x0,y0)Q图1教师:那么,练习(5)有没有运算量小一点的推导方法呢?我们能不能根据刚才的第(2)、(3)的启示,借助水平、竖直情形和平面几何知识来解决倾斜即一般情况呢?请同学们思考。学生3:能!如图1,过点P作x、y 轴的垂线分别交直线l于S、R,则由三角形面积公式可得 |PQ|=(|PR|PS|)/|RS|教师:|PR|怎么
5、求?|PS|又怎么求?学生3:设R(x1 ,y0),则由Ax1+By0+C=0, 得x1= (By0+C)A, |PR|=| x0- x1|=|Ax0+By0+C|A|; 同理:|PS|=|Ax0+By0+C|B|。教师:|RS|怎么求?学生3:|RS|=(/|AB|)|Ax0+By0+C|。教师:|PQ|结果是什么?学生3:|PQ|=。教师:公式的这种推导方法是否需要作补充说明?学生4:当A=0或B=0时,PRS不存在,故应说明公式当A=0或B=0时是否适用?由(2)、(3)检验可知公式依然成立,即公式对任意直线都适用。3 .教师提出问题,学生分组讨论(约10分钟)教师:推导点到直线的距离公
6、式的方法不少。前面我们学了函数、三角函数、向量、不等式等数学知识,你能用所学过的知识从不同角度、采用不同方法来推导这个公式吗?请同学们先独立思考,然后在小组上进行讨论交流,由组长负责记录。10分钟后每组推选一名代表对本组找到的最好的一种推导方法通过实物投影进行“成果”交流。学生们积极探讨;教师来回巡视,回答各研究小组的询问4.学生交流“成果”,教师点评小结(约16分钟)经过约十分钟的研讨,各小组都找到了新的推导方法。于是教师请4名代表依次上讲台(让准备成熟的先讲),借助实物投影介绍本组的“成果”。由于时间关系,每组只要求讲一种方法,用时不超过4分钟,且各组的方法不能重复。学生5:我们用的是“设
展开阅读全文