初高中数学衔接教材16讲word版配答案(精品版)第一讲~第十六讲.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初高中数学衔接教材16讲word版配答案(精品版)第一讲~第十六讲.doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初高中数学衔接教材16讲word版配答案精品版 第一讲第十六讲 高中数学 衔接 教材 16 word 答案 精品 第一 第十六 下载 _初高中衔接_数学_高中
- 资源描述:
-
1、第一讲 因式分解一、知识归纳1、公式法分解因式:用公式法因式分解,要掌握如下公式:(1);(2);(3);(4);(5);(6);(7)当n为正奇数时当n为正偶数时2、十字相乘法因式分解3、待定系数法因式分解4、添项与拆项法因式分解5、长除法二、例题讲解例1:因式分解:例2:因式分解:例3:因式分解例4:利用待定系数法因式分解(1) (2)例5:利用添项法、拆项法因式分解(1) (2)例6:已知,求的值。三、课堂练习1、分解因式(1)(2)(3)分解因式(1)(2)3、分解因式(1)(2)4、已知多项式能被整除,且商式是则 。5、多项式能被整除,求的值。第二讲分式一、知识归纳(一)分式的运算规
2、律1、加减法同分母分式加减法:异分母分式加减法:2、乘法:3、除法:4、乘方:(二)分式的基本性质1、2、(三)比例的性质(1)若则(2)若则(合比性质)(3)若()则(合分比性质)(4)若,且则(等比性质)(四)分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质二、例题解析例1:化简例2:化简:例3:计算例4:计算例5:若,求例6:已知且求分式的值三、课堂练习1、已知,则x;2、若则分式;3、设,则;4、若,且,则;5、设、为有理数,且,则;6、已知、均不为0,且,则;第三讲图形变换一、知识归纳1、2、3、
3、4、5、将图象在x轴下方的部分,以x轴为对称轴对称地翻折上去即可6、将的图象位于y轴右边的部分保留,在y轴的左边作其对称的图即可。二、例题解析例1:说出下列函数图象之间的相互关系(1)与(2)与(3)与(4)与例2:已知中的图的对应函数,则中的图象对应函数为;xy0xy0A、B、C、D、例3:画出下列函数的图象(1)(2)例4:已知的图象过点(3,2),那么与函数的图系关于x轴对称的图象一定过点;A、(4,2)B、(4,2)C、(2,2)D、(2,2)xy0-1123123例5:试讨论方程的根的个数例6:求方程的解的个数课堂练习:1、函数的图象;A、与的图象关于y轴对称B、与的图象关于原点对称
4、C、与的图象关于y轴对称D、与的图象关于原点对称2、为了得到的图象,可以把的图象yx0(0,1)y=2x第3题图A、向左平移3个单位长度B、向右平移3个单位长度C、向左平移1个单位长度D、向右平移1个单位均等3、已知的图象如右,请画出以下函数的图象yx0(1,0)第4题图(1)(2)(3)(4)(5)4、已知 EMBED Equation.# 的图象如右:试求不等式:成立的x的取值范围5、已知方程有一负根,而没有正根,那么a的取值范围是;A、B、C、D、补以上答案第四讲三角形的“五心”一、知识归纳1、重心:三角形的三条中线交点,它到顶点的距离等于它到对边中点的距离的2倍,重心和三顶点的连线将A
5、BC的面积三等分,重心一定在三角形内部。2、外心:是三角形三边中垂线的交点,它到各顶点的距离相等,锐角三角形的外心在三角形内,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形外。3、内心:是三角形的三内角平分线的交点,它到三边的距离相等,内心一定在三角形内。4、垂心:是三角形三条高的交点,垂心和三角形的三个顶点,三条高的垂足组成六组四点共圆,锐角三角形的垂心在三角形内,直角三角形的垂心为直角顶点,钝角三角形的垂心在三角形外。5、旁心:是三角形任意两角的外角平分线和第三个角的内角平分线的交点,它到三角形的三边距离相等,一定位于三角形外部。二、例题解析例1:在锐角ABC中,内角为A、B、C三
6、边为a、b、c,则内心到三边的距离之比为,重心到三边的距离为,外心到三边的距离之比为,垂心到三边的距离之比为。AFBDCEH例2:如图,锐角ABC的垂心为H,三条高的垂足分别为D、E、F,则H是DEF的;A、垂心B、重心C、内心D、外心例3:如图,D是ABC的边BC上任一点,点E、ABCEGFMDNF分别是ABD和ACD的重心连结EF交AD于G点,则DG:GA;例4:设ABC的重心为G,GA,则;例5:若H为ABC的重心,AHBC,则BAC的度数是;A、45B、30C、30或150D、45或135AEBCDOG例6:已知平行四边形ABCD中,E是AB的中点,AB10,AC9,DE12,求平行四
7、边形ABCD的面积。三、课堂练习1、已知三角形的三边长分别为5,12,13,则其垂心到外心的距离为,重心到垂心的距离为;2、已知三角形的三边长为5,12,13,则其内切圆的半径;3、在ABC中,A是钝角,O是垂心,AOBC,则cos(OBC+OCB)= ; 4、设G为ABC的重心,且AG6,BG8,CG10,则ABC的面积为;5、若,那么以、为三边的ABC的内切圆,外接圆的半径之和为;A、B、C、D、6、ABC的重心为G,M在ABC的平面内,求证:第五讲几何中的著名定理一、知识归纳本节重点掌握三角形内、外角平分线定理、中线长定理,梅涅劳斯定理与塞瓦定理二、例题解析例1:如图ABC中,AD为BA
8、C的角平分线AFBDCE12求证:ABCD12例2:如图,ABC中,AD为A的外角平分线,交BC的延长线于点D,求证:.ABDEC例3:如图,AD为ABC的中线,求证:例4:(梅涅劳斯定理)AFBCEGD如果在ABC的三边BC,CA、AB或其延长线上有点D、E、F且D、E、F三点共线,则AMBNCP0123456例5:设O为ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则.三、课堂练习1、如图,P是AC中点,D、E为BC上两点,且BDDEEC,则BM:MN:NP ;BDAESCM2、如图,在ABC中,D、E分别在边AB、AC上且DE/BC,设BE与CD交于S,证明BMCM。3、证明
9、:三角形的三条角平分线交于一点。第六讲圆一、知识归纳1、证明四点共圆的方法有:(1)到一定点的距离相等的点在同一个圆上(2)同斜边的直角三角形的各顶点共圆(3)线段同旁张角相等,则四点共圆。(4)若一个四边形的一组对角再互补,那么它的四个顶点共圆(5)若四边形的一个外角等于它的内对角,那么它的四个顶点共圆(6)四边形ABCD对角线相交于点P,若PAPCPBPD,则它的四个顶点共圆(7)四边形ABCD的一组对边AB、DC的延长线交于点P,若,则它的四个顶点共圆。2、圆幂定理二、例题讲解例1:如图,设AB为圆的直径,过点A在AB的同侧作弦AP、AQ交B处的切线于R、S,求证:P、Q、S、R同点共圆
10、。ABQSRPADCOEB例2:圆内接四边形ABCD,O为AB上一点,以O为圆心的半圆与BC,CD,DA相切,求证:ADBCAB例3:如图,设A为O外一点,AB,AC和O分别切于B,C两点,APQ为O的一条割线,过点B作BR/AQ交O于点R,连结CR交AO于点M,试证:A,B,C,O,M五点共圆。例4:如图,PA切O于A,割线PBC交O于B,C两点,D为PC中点,且AD延长线交O于点E,又,求证:(1)PAPD;(2).APBDOEC例5:如图,PA,PB是O的两条切线,PEC是一条割线,D是AB与PC的交点,ACDPOHEB若PE长为2,CD1,求DE的长度。三、课堂练习1、如图,已知点P在
11、O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A,B两点,并交ST于点C,求证:SBDPOACTABGPCOMR2、如图,A是O外一点,AB、AC和O分别切于点B、C,APQ为O的一条割线,过B作BR/AQ交O于R,连CR交AQ于M。试证:A,B,C,O,M五点共圆。3、设O1、O2、O3两两外切,M是O1、O2的切点,R、S分别是O1、O2与O3的切点,连心线交O1于P,O2于Q,求证:P、Q、R、S四点共圆。PRQSO1O3O2第七讲 一次函数和一次不等式【要点归纳】1、形如y=kx+b(k0)的函数叫做一次函数。(1)它的图象是一条斜率为k,过点(0,b)的直线。(2
12、)k0是增函数;kb的解的情况:(1)当a0时,;(2)当a0,则无解。类似地,请同学们自行分析不等式ax0,则=_例9 若不等式(2a-b)x+(3a-4b)0的解。【反馈练习】1、一次函数y=(3m-1)x-(m+5)的图象不过第一象限,则实数m的取值范围是_2、一次函数f(x)满足:f(f(f(x))=-27x-21,则f(x)=_3、函数f(x)=3x+1+k-2kx在-1x1时,满足f(x)k恒成立,则整数k的值为_4、已知x0,y0,z0,且满足x+3y+2z=3,3x+3y+z=4求w=3x-2y+4z的最大值和最小值。5、若不等式5x-a0的正整数解是1,2,3,4,则a的取值
13、范围为_6、解关于x的不等式:a(x-a)x-17、若不等式(m+n)x+(2m-3n)0的解。8、解关于x的不等式组:第八讲 均值不等式【要点归纳】当a,b,c0时,则(1)(当且仅当a=b时,取“=”)(2)(当且仅当a=b=c时,取“=”)更一般地,当(n)时,则(当且仅当时,取“=”)【典例分析】例1 设a,b,c0,证明下列不等式: (1) (2)例2 下列命题中有_个正确(1)函数的最小值是4;(2)函数的最小值是2(3)函数的最大值是(4)函数,当x=1时,取最小值。例3 (1) 已知,且,求x+y的最小值;(2) 已知,且,求的最大值。例4 (1)当x1时,求的最小值;(2)当
14、时,求的最大值。例5 (1)当a,b0时,证明:(2)设abc,求使得不等式恒成立的k的最大值。 例6 某食品厂定期购买面粉,已知每吨面粉的价格为1800元,该厂每天需用面粉6吨,面粉的保管费为平均每吨每天3元,因需登记入库,每次所购面粉不能当天使用,每次购面粉需支付运输费900元,求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?【反馈练习】1、已知,且a+b=1,求的最小值。2、函数y=x(1-2x) ()的最大值等于_;此时x=_3、函数的最小值为6,则实数a=_4、已知,且ab=3+a+b,求ab的取值范围。5、求函数的最大值及相应的x的值。6、设计一幅宣传画,要求画面面积为
15、4840,画面的宽与高的比为,画面的上下各留8空白,左右各留5空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?第九讲 一次分式函数【要点归纳】形如的函数,叫做一次分式函数。(1)特殊地,叫做反比例函数;(2)一次分式函数的图象是双曲线,是两条渐近线,对称中心为()(c0)。【典例分析】例1 说明函数的图象可由函数的图象经过怎样的平移变换而得到,并指出它的对称中心。例2 求函数在-3x-2上的最大值与最小值。例3 将函数的图象向右平移1个单位,向上平移3个单位得到函数的图象(1)求的表达式;(2)求满足2的x的取值范围。例4 求函数的值域。例5 函数,当且仅当-1x1时,(1)求常数
展开阅读全文