2022年初升高数学衔接讲义专题05二次函数的三种表示方式(教师版含解析).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年初升高数学衔接讲义专题05二次函数的三种表示方式(教师版含解析).docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 升高 数学 衔接 讲义 专题 05 二次 函数 表示 方式 教师版 解析 下载 _初高中衔接_数学_高中
- 资源描述:
-
1、专题05二次函数的三种表示方式专题综述课程要求二次函数是初中数学的一个重要内容,是中考重点考查的内容,也是高考必考内容,同时还是一个研究函数性质的很好的载体,因此做好二次函数的初高中衔接至关重要,初中阶段对二次函数的要求,是立足于用代数方法来研究,比如配方结合顶点式,描述函数图象的某些特征(开口方向、顶点坐标、对称轴、最值)等;再比如待定系数法,通过解方程组的形式来求二次函数的解析式.高中的函数立足于集合观点,对二次函数的学习要求明显提高,二次函数的研究更侧重于数形结合、分类讨论等思想方法.课程要求初中课程要求了解了一些简单函数图象的变换,如左加右减之类的水平平移,还了解了些简单的对称变换高中
2、课程要求掌握各种平移变换,如左加右减的水平平移,上加下减的垂直平移,还要掌握各种对称变换,特別是关于原点、坐标轴的对称变换知识精讲高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:yax2bxc(a0);高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:ya(x-h)2k (a0),其中顶点坐标是(h,k)高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:ya(xx1) (xx2) (a0),其中x1,x2是二次函数图象与x轴交点的横坐标典例剖析高中必备知识点1:一般式【典型例题】已知抛物线yax2+bx+c的对称轴为x1,且过点(3,0),(0,3)(1)求抛物
3、线的表达式(2)已知点(m,k)和点(n,k)在此抛物线上,其中mn,请判断关于t的方程t2+mt+n0是否有实数根,并说明理由【答案】(1)yx2+2x3;(2)方程有两个不相等的实数根【解析】(1)抛物线yax2+bx+c的对称轴为x1,且过点(3,0),(0,3)9a3b+c0 解得a1,b2,c3抛物线yx2+2x3;(2)点(m,k),(n,k)在此抛物线上,(m,k),(n,k)是关于直线x1的对称点,1 即mn2b24acm24n(n2)24nn2+40此方程有两个不相等的实数根【变式训练】抛物线的图象如下,求这条抛物线的解析式。(结果化成一般式) 【答案】y=-x2+2x+3
4、【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3【能力提升】如图,在平面直角坐标系中,抛物线y1=12x2先向右平移2个单位,再向下平移2个单位,得到抛物线y2.(1)求抛物线y2的解析式(化为一般式);(2)直接写出抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) y=12x-22-2 ;(2)4.【解析】(1)抛物线y1=12x2的顶点坐标为0,0,把点0,0先向右平移2个单位,再向下平移2个单位后得到的点的
5、坐标为2,-2,抛物线y2的解析式为y=12x-22-2;(2)顶点坐标为2,-2,且抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积=S矩形OBAC,抛物线y2的对称轴与两段抛物线弧围成的阴影部分的面积=4.高中必备知识点2:顶点式【典型例题】已知二次函数用配方法将此二次函数化为顶点式;求出它的顶点坐标和对称轴方程【答案】(1);(2)(1,2),直线【解析】(1) (2)顶点坐标为(1,2),对称轴方程为直线.【变式训练】已知二次函数的图象的顶点是(1,2),且经过(1,6),求这个二次函数的解析式【答案】二次函数的解析式为y=2(x+1)2+2【解析】二次函数的图象的顶点是(1,2)
展开阅读全文