书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型河北省邯郸市2020届高三数学上学期期末考试试题理(含解析) .doc

  • 上传人(卖家):烟花三月012
  • 文档编号:308140
  • 上传时间:2020-02-27
  • 格式:DOC
  • 页数:12
  • 大小:167.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《河北省邯郸市2020届高三数学上学期期末考试试题理(含解析) .doc》由用户(烟花三月012)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    河北省邯郸市2020届高三数学上学期期末考试试题理含解析 河北省 邯郸市 2020 届高三 数学 上学 期末考试 试题 解析 下载 _考试试卷_数学_高中
    资源描述:

    1、河北省邯郸市2020届高三数学上学期期末考试试题 理(含解析)一、选择题(本大题共12小题)1. 已知复数z满足为虚数单位,则复数A. B. C. D. 2. 已知全集,则A. B. C. D. 3. 曲线在点处的切线方程为A. B. C. D. 4. 已知抛物线的准线与圆C:相切,则A. 2B. 4C. 8D. 165. 九章算术衰分中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多

    2、少税?”则下列说法中错误的是A. 甲付的税钱最多B. 乙、丙两人付的税钱超过甲C. 乙应出的税钱约为32D. 丙付的税钱最少6. 一个几何体的三视图如图所示,则该几何体的最长棱长为A. B. C. D. 7. 如图,在平行四边形ABCD中,为EF的中点,则A. B. C. D. 8. 执行如图所示的程序框图,则输出的a值为A. B. C. D. 29. 公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方如图,以O为圆心的大圆直径为4,以AB为直径的半圆面积等于AO与BO所夹四分之一大圆的面积,由此可知,月牙形区域的面积与的面积相等现在在两个圆所覆盖的区域内随机取一点,则

    3、该点来自于阴影部分的概率是A. B. C. D. 10. 已知函数为定义在一,上的奇函数,当时,若函数存在四个不同的零点,则m的取值范围为A. B. C. D. 11. 已知正六棱锥的所有顶点在一个半径为1的球面上,则该正六棱锥的体积最大值为A. B. C. D. 12. 已知,将的图象向左平移个单位,再把所得图象上所有点的横坐标变为原来的得到的图象,下列关于函数的说法中正确的个数为函数的周期为;函数的值域为;函数的图象关于对称;函数的图象关于对称A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题)13. 已知等差数列中,则_14. 若实数x,y满足约束条件,则的最大值是_15

    4、. 现有排成一排的5个不同的盒子,将红、黄、蓝色的3个小球全部放人这5个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻的不同放法共有_种结果用数字表示16. 已知点P为双曲线右支上一点,双曲线C的左,右焦点分别为,且的角平分线与x轴的交点为Q,满足,则双曲线C的离心率为_三、解答题(本大题共6小题)17. 在中,内角A,B,C的对边分别为a,b,c,设的面积为S,若求tanB的值;若,求b的值18. 已知数列的前n项和为,满足求证:数列为等比数列;记,求数列的前n项和19. 如图,在三棱柱中,侧棱底面ABC,底面是正三角形,求证:平面BCF;求直线与平面BCF所成角的正弦值20. 近来天

    5、气变化无常,陡然升温、降温幅度大于的天气现象出现增多陡然降温幅度大于容易引起幼儿伤风感冒疾病为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的100名幼儿进行调查,得到了如下的列联表,若在全部100名幼儿中随机抽取1人,抽到患伤风感冒疾病的幼儿的概率为请将下面的列联表补充完整;患伤风感冒疾病不患伤风感冒疾病合计男25女20合计100能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;已知在患伤风感冒疾病的20名女性幼儿中,有2名又患黄痘病现在从患伤风感冒疾病的20名女性中,选出2名进行其他方面的排查,记选出患黄痘病的女性人数为X,求X的分布列以及数学期望下面的

    6、临界值表供参考:参考公式:,其中21. 已知椭圆上的一点到其左顶点A的距离为求椭圆C的方程;若直线l与椭圆C交于M,N两点N与点A不重合,若以MN为直径的圆经过点A,试证明:直线l过定点22. 已知函数讨论函数的单调性;设,当函数与的图象有三个不同的交点时,求实数a的取值范围答案和解析1.【答案】B【解析】解:由题意,则复数故选:B直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题2.【答案】A【解析】解:因为,所以,又,所以:,故选:A先利用补集的定义求出,再利用集合并集的运算即可求出本题主要考查集合的基本运算,是

    7、基础题3.【答案】C【解析】解:由,得,故切线的斜率为又,曲线在点处的切线方程为,即故选:C求出原函数的导函数,求得函数在处的导数,再求得的值,利用直线方程点斜式得答案本题考查利用导数研究过曲线上某点处的切线方程,是基础题4.【答案】C【解析】解:抛物线的准线为由题意与圆C:相切所以解得故选:C求出抛物线的准线方程,通过准线与圆相切,列出方程求解即可本题考查抛物线的简单性质与准线与圆的位置关系的应用,是基本知识的考查,基础题5.【答案】B【解析】解:由题意,按比例,甲钱最多,付的税钱最多;丙钱最少,付的税钱最少;可知A,D正确乙、丙两人共持钱,故乙、丙两人付的税钱不超过甲,可知B错误乙应出的税

    8、钱为可知C正确故选:B本题根据题意对甲、乙、丙三个人根据自己所有的钱数按比例进行交税,根据比例的性质特点即可得到正确选项本题主要考查应用题的理解能力,以及按比例分配的知识本题属基础题6.【答案】C【解析】解:由题意该几何体的直观图是一个四棱锥如图所示其中为最长棱由勾股定理得故选:C首先把三视图转换为几何体,进一步求出结果本题考查的知识要点:三视图和几何体之间的转换,几何体中的勾股定理的应用,主要考察学生的运算能力和转换能力,属于基础题型7.【答案】A【解析】解:如图,在平行四边形ABCD中,为EF的中点,故选:A利用向量的运算,与向量的几何运算,求出即可考查向量的运算,向量与平面几何的结合,中

    9、档题8.【答案】D【解析】解:当时,不满足退出循环的条件,执行循环体后,;当时,不满足退出循环的条件,执行循环体后,;当时,不满足退出循环的条件,执行循环体后,;当时,不满足退出循环的条件,执行循环体后,;当时,不满足退出循环的条件,执行循环体后,;a的值是以4为周期的循环,由,故当时,满足退出循环的条件,故输出的a值为2,故选:D由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,本题属于基础题9.【答案】B【解析】解:上方阴影部分

    10、的面积等于的面积,下方阴影部分面积等于,所以根据几何概型,得所求概率,故选:B求出阴影部分的面积,利用几何概型公式求出即可考查几何概型求概率的方法,中档题10.【答案】A【解析】解:A当时,故在上单调递增,因为故在上单调递战,在上单调递增如图为大致图象由存在四个不同的零点知与的图象有四个不同交点,故,故选:A由函数为奇函数,画出的图象,由奇函数的性质画出的图象,四个零点既是两个函数有四个交点的情况,根据单调性求出m的范围考查函数的零点与方程根的关系,属于中档题11.【答案】B【解析】解:过P作平面ABCDEF,取O为球心,设,在中,正六棱锥的体积:当且仅当时,取等号故选:B过P作平面ABCDE

    11、F,取O为球心,设,推导出,正六棱锥的体积由此能求出该正六棱锥的体积最大值本题考查正六棱锥的体积最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12.【答案】B【解析】解:因为,且,故函数的周期为因此正确;因为故因此错误;令得故正确:因为故图象不是中心对称图形,故错误综上,正确的个数为2故选:B可化为2cos2x,进而可得到的周期,自变量范围,对称轴及对称中心本题考查命题真假性的判断,涉及三角函数的和差关系,周期性,对称轴等性质,属于中档题13.【答案】6【解析】解:设等差数列的公差为d则解得所以故答案为:6结合等差数列的通项公式可求公差d,进而可求本

    12、题考查了等差数列的通项公式,是基础的计算题14.【答案】1【解析】解:作出不等式组,表示的可行域如图所示,平移直线易知当直线经过可行域内的点时,目标函数取得最大值,且,故答案为:1作出不等式组对应的平面区域,利用数形结合即可的得到结论本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键15.【答案】24【解析】解:根据题意,分2步进行分析:,要求有两个空盒相邻,其排法有4种,每种相邻情况下,排红、黄、蓝颜色的3个小球有种排法则恰有两个空盒相邻的不同放法共有种;故答案为:24根据题意,分2步进行分析:,分析有两个空盒相邻的情况,每种相邻情况下,排红、黄、蓝颜色的3个小球的情

    13、况数目,由分步计数原理计算可得答案本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题16.【答案】【解析】解:由,得,故,又,故,再根据双曲线定义知,即,在中,由余弦定理知,故,即故答案为:利用向量关系,结合双曲线C的左,右焦点分别为,推出三角形的面积关系,通过余弦定理转化求解即可本题考查双曲线的方程和性质,三角形的解法,余弦定理的应用,向量关系的应用,考查了学生综合分析问题和解决问题的能力17.【答案】解:由題意得:即:,整理可得:,又所以,所以:由,得,又,则,解得将,代入中,得:,解得:【解析】由三角形的面积公式,余弦定理化简已知等式可得,进而根据同角三角函数基本关系式即可求解

    14、tanB的值由同角三角函数基本关系式可求sinB的值,根据三角形的面积公式可求c的值,即可求解b的值本题主要考查了三角形的面积公式,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题18.【答案】解:当时,解得,由,得得即故为等比数列,公比为,首项由知故,故故,得所以【解析】当时,解得,通过,推出为等比数列;由求出,故利用错位相减法求解数列的和即可本题考查了数列的递推关系式与前n项和的求法,错位相减法的应用,考查了推理能力与计算能力,属于基础题19.【答案】解:证明:在线段BC上取一点使连结在中因为所以所以所以,且因为所以所以且故四边形为平行四边形,所

    15、以又平面BCF,平面BCF所以平面BCF以B为坐标原点,Bx,BC,BB所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,因为底面是正三角形,所以点则设平面BCF的法向量为y,由令得平面BCF的一个法向量为又设直线与平面BCF所成角的大小为则所以直线与平面BCF所成角的正弦值为【解析】在线段BC上取一点使连结证明,推出,得到四边形为平行四边形,推出,然后证明平面BCF以B为坐标原点,Bx,BC,BB所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,求出平面BCF的法向量,求出,直线与平面BCF所成角的大小为利用斜率的数量积求解即可本题考查直线与平面所成角的求法,直线与平面平行的判

    16、断定理的应用,考查空间想象能力以及转化思想的应用,是中档题20.【答案】解:列联表补充如下;患伤风感冒疾病不患伤风感冒疾病合计男202545女203555合计4060100计算的观测值为所以不能在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有美根据题意,X的值可能为0,1,2则,故X的分布列如下:X012P故X的数学期望:【解析】由题设条件能补充完整列联表求出,从而不能在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有美根据题意,X的值可能为0,1,分别求出相应的概率,由此能求出X的分布列和数学期望本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法,考查古典概型、排列

    17、组合等基础知识,考查运算求解能力,是中档题21.【答案】解:易知左顶点A的坐标为由已知可得,解得,所以椭圆C的方程为;证明:若以MN为直径的圆经过点A则,即,故A当直线MN的斜率不存在时,设直线MN的方程为,由题意得为等腹直角三角形,设直线MN与椭圆在x轴上方的交点为M,则M的坐标为所以有,解得舍去或,所以此时直线MN的方程为,当直线MN的斜率存在时,设直线MN方程为,联立:消去y得:,则,由题意,则,则,所以,化简得,所以,解得或,当时,满足此时直线方程为过定点:当时,满足此时直线方程为过定点,不合题意综上直线l经过定点【解析】由椭圆过的点及它到左顶点的距离求出a,b的值,进而求出椭圆的方程

    18、;以MN为直径的圆经过点A,既是,即,分直线l的斜率存在和不存在两种情况讨论,求出参数之间的关系,即求出过的定点,证明完成考查直线与椭圆的综合应用,属于中档题22.【答案】解:的定义域是,当时两数在上单调递增;当时,令 0/,得;令,得故函数在上单调递增,在上单调递减由,得得设,则有三个不同的根等价于函数存在三个不同的零点当即时,单调递减,不可能有三个不同的零点,当即,有两个零点,又开口向下,当时,函数在上单调递诫:当时, 0./函数在上单调递增:当时,函数在上单调递减因为,又,有所以令则令则单调递增由,求得当时,单调递减,显然在上单调递增,故由零点存在性定理知在区间上有一个根设为又得所以所以是的另一个零点故当时,存在三个不同的零点,故实数a的取值范围是【解析】求导,分a的正负讨论函数的单调性;令函数,由题意知,由3个零点时的a的取值范围用求导的方法,求出函数的单调性,求出函数与x轴由3个交点的a的范围考查函数的零点与方程根的相互转换,属于难题

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:河北省邯郸市2020届高三数学上学期期末考试试题理(含解析) .doc
    链接地址:https://www.163wenku.com/p-308140.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库