书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型2020中考数学复习专题尺规作图(解析版).docx

  • 上传人(卖家):烟花三月012
  • 文档编号:307523
  • 上传时间:2020-02-27
  • 格式:DOCX
  • 页数:25
  • 大小:382.69KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020中考数学复习专题尺规作图(解析版).docx》由用户(烟花三月012)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 中考 数学 复习 专题 作图 解析 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、专题32 尺规作图问题 专题知识回顾 1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已

    2、知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析 【例题1】(2019湖南长沙)如图,RtABC中,C90,B30,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则CAD的度数是()A20B30C45D60【答案】B 【解析】根据内角和定理求得BAC60,由中垂线性质知DADB,即DABB30,从而得出答案在ABC中,B30,C90,BA

    3、C180BC60,由作图可知MN为AB的中垂线,DADB,DABB30,CADBACDAB30。【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,CBD75,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求DBF的度数【答案】见解析。【解析】(1)分别以A.B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可。如图所示,直线EF即为所求;(2)根据DBFABDABF计算即可。四边形ABCD是菱形,ABDDBCABC75,DCAB,ACABC150,ABC+C180,CA30,EF垂直平分线段AB

    4、,AFFB,AFBA30,DBFABDFBE45【例题3】(2019年贵州安顺模拟题)用直尺和圆规作一个角等于已知角,如图,能得出AOB=AOB的依据是()A(SAS)B(SSS)C(ASA)D(AAS)【答案】B 【解析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得作图的步骤:以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;任意作一点O,作射线OA,以O为圆心,OC长为半径画弧,交OA于点C;以C为圆心,CD长为半径画弧,交前弧于点D;过点D作射线OB所以AOB就是与AOB相等的角;作图完毕在OCD与OCD,OCDOCD(S

    5、SS),AOB=AOB,显然运用的判定方法是SSS【例题4】(2019山东青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹已知:,直线l及l上两点A,B求作:RtABC,使点C在直线l的上方,且ABC90,BAC【答案】见解析。【解析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作先作DAB,再过B点作BEAB,则AD与BE的交点为C点如图,ABC为所作 专题典型训练题 一、选择题1.(2019广西北部湾)如图, 在ABC中,AC=

    6、BC, A=400 ,观察图中尺规作图的痕迹,可知BCG的度数为()A 400 B450 C500 D600【答案】C【解析】利用等腰三角形的性质和基本作图得到CGAB,则CG平分ACB,利用A=B和三角形内角和计算出ACB,从而得到BCG的度数本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了等腰三角形的性质由作法得CGAB,AB=AC,CG平分ACB,A=B,ACB=180-40-40=100,BCG=ACB=502.(2019贵州贵阳)如图,在ABC中,ABAC,以点C为圆心

    7、,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E若AE2,BE1,则EC的长度是()A2B3CD【答案】D【解析】利用基本作图得到CEAB,再根据等腰三角形的性质得到AC3,然后利用勾股定理计算CE的长由作法得CEAB,则AEC90,ACABBE+AE2+13,在RtACE中,CE3.(2019河北省)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A B C D【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心4(2019山东潍坊)如图

    8、,已知AOB按照以下步骤作图:以点O为圆心,以适当的长为半径作弧,分别交AOB的两边于C,D两点,连接CD分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在AOB内交于点E,连接CE,DE连接OE交CD于点M下列结论中错误的是()ACEODEOBCMMDCOCDECDDS四边形OCEDCDOE【答案】C【解析】利用基本作图得出角平分线的作图,进而解答即可由作图步骤可得:OE是AOB的角平分线,CEODEO,CMMD,S四边形OCEDCDOE,但不能得出OCDECD5(2019湖北宜昌)通过如下尺规作图,能确定点D是BC边中点的是( ) A B C D【答案】A 【解析】作线段BC的垂直

    9、平分线可得线段BC的中点作线段BC的垂直平分线可得线段BC的中点由此可知,选项A符合条件,故选A6.(经典题)作一条线段等于已知线段。已知:如图,线段a .求作:线段AB,使AB = a .【答案】见解析。【解析】作法: 作射线AP; 在射线AP上截取AB=a .则线段AB就是所求作的图形。7.(经典题)已知三边作三角形。已知:如图,线段a,b,c.求作:ABC,使AB = c,AC = b,BC = a.【答案】见解析。【解析】作法: 作线段AB = c; 以A为圆心b为半径作弧,以B为圆心 a为半径作弧与前弧相交于C; 连接AC,BC。则ABC就是所求作的三角形。8.(经典题)已知两边及夹

    10、角作三角形。已知:如图,线段m,n, .求作:ABC,使A=,AB=m,AC=n.【答案】见解析。【解析】作法: 作A=; 在AB上截取AB=m ,AC=n; 连接BC。则ABC就是所求作的三角形。9.(经典题)做已知线段的中点已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).【答案】见解析。【解析】作法: 分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q; 连接PQ交MN于O则点O就是所求作的的中点。10.(经典题)作已知角的角平分线。已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。【答案】见解析。【解析】作法: 以O为圆心

    11、,任意长度为半径画弧, 分别交OA,OB于M,N; 分别以M、为圆心,大于1/2MN的相同线段为半径画弧,两弧交AOB内于; 作射线OP。则射线OP就是AOB的角平分线。11.(经典题)已知两角及夹边作三角形。已知:如图,线段m .求作:ABC,使A=,B=,AB=m.【答案】见解析。【解析】作法: 作线段AB=m; 在AB的同旁作A=,作B=,A与B的另一边相交于C。则ABC就是所求作的图形(三角形)。12.(2019河北模拟题)如图,已知ABC(ACBC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A B C D【答案】D 【解析】要使PA+PC=BC,必有P

    12、A=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确D选项中作的是AB的中垂线,PA=PB,PB+PC=BC,PA+PC=BC13.(2019丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是()A.矩形 B.菱形 C.正方形 D.等腰梯形【答案】B 【解析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形。分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,AC=AD=BD

    13、=BC,四边形ADBC一定是菱形。14.(2019湖南益阳)已知M、N是线段AB上的两点,AMMN2,NB1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则ABC一定是()A锐角三角形B直角三角形C钝角三角形D等腰三角形【答案】B 【解析】依据作图即可得到ACAN4,BCBM3,AB2+2+15,进而得到AC2+BC2AB2,即可得出ABC是直角三角形如图所示,ACAN4,BCBM3,AB2+2+15,AC2+BC2AB2,ABC是直角三角形,且ACB90,故选B二、填空题15(2019武汉)如图,BD是矩形ABCD的对角线,在BA和BD上分

    14、别截取BE,BF,使BEBF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在ABD内交于点G,作射线BG交AD于点P,若AP3,则点P到BD的距离为 【答案】3【解析】结合作图的过程知:BP平分ABD,A90,AP3,点P到BD的距离等于AP的长,为3。16(2019济南)如图,在RtABC中,C90,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D若A30,则 【答案】【解析】由作法得BD平分ABC,C90,A30,ABC60,ABDCBD30,DADB,在RtBCD中,BD2CD,AD

    15、2CD,1/2 17. ( 2019甘肃省兰州市) 如图, 矩形ABCD, BAC600. 以点A为圆心,以任意长为半径作弧分别交AB.AC于点M、N两点,再分别以点M、N 为圆心,以大于MN的长为半径作弧交于点P ,作射线AP交BC于点E,若BE1,则矩形ABCD的面积等于_.【答案】3【解析】 由题可知AP是BAC的角平分线BAC600BAEEAC300AE2 BE2.ABAEB600又AEBEAC+ECAEACECA300AEEC2BC3S矩形ABCD318. (2019四川成都)如图,ABCD的对角线AC与BD相交于点O,按以下步骤作图:以点A为圆心,以任意长为半径作弧,分别交AO,A

    16、B于点M,N;以点O为圆心,以AM长为半径作弧,交OC于点;以点为圆心,以MN长为半径作弧,在COB内部交前面的弧于点;过点作射线交BC于点E,若AB=8,则线段OE的长为 .【答案】4 【解析】此题考察的是通过尺规作图构造全等三角形的原理及两直线平行的判定,连接和,因为,所以,所以,所以,又因为是中点,所以是的中位线,所以,所以.三、填空题19(2019六盘水模拟题)如图,在ABC中,利用尺规作图,画出ABC的外接圆或内切圆(任选一个不写作法,必须保留作图痕迹)【答案】见解析。【解析】分别利用三角形外心的确定方法以及内心的确定方法得出圆心位置,进而得出即可。如图所示:20.(2019石景山二

    17、模)下面是小华设计的“作一个角等于已知角的2倍”的尺规作图过程已知:AOB求作:APC,使得APC=2AOB作法:如图,在射线OB上任取一点C;作线段OC的垂直平分线,交OA于点P,交OB于点D;连接PC;所以APC即为所求作的角根据小华设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面的证明(说明:括号里填写推理的依据) 证明:DP是线段OC的垂直平分线, OP= ( )O=PCOAPC=O+PCO( )APC =2AOB【答案】见解析。【解析】(1)补全的图形如图所示:(2)PC;线段垂直平分线上的点到线段两个端点的距离相等; 三角形的一个外角等于与它不相邻的

    18、两个内角的和21.(2019湖北省仙桃市)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(1)如图,四边形ABCD中,ABAD,BD,画出四边形ABCD的对称轴m;(2)如图,四边形ABCD中,ADBC,AD,画出BC边的垂直平分线n【答案】见解析。【解析】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线(1)连接AC,AC所在直线即为对称轴m如图,直线m即为所求(2)(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n如图,直线n即为所求22.(2019四川省达州市)如图,在RtABC中,ACB90,AC2,BC3

    19、(1)尺规作图:不写作法,保留作图痕迹作ACB的平分线,交斜边AB于点D;过点D作BC的垂线,垂足为点E(2)在(1)作出的图形中,求DE的长【答案】见解析。【解析】(1)利用基本作图,先画出CD平分ACB,然后作DEBC于E。如图,DE为所作;(2)利用CD平分ACB得到BCD45,再判断CDE为等腰直角三角形,所以DECE,然后证明BDEBAC,从而利用相似比计算出DECD平分ACB,BCDACB45,DEBC,CDE为等腰直角三角形,DECE,DEAC,BDEBAC,即,DE23.(2019广东)如图,在ABC中,点D是AB边上的一点(1)请用尺规作图法,在ABC内,求作ADE使ADE=

    20、B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值【答案】见解析。【解析】(1)如图所示,ADE为所求.(2)ADE=BDEBC=2 =224.(2019广西贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC,请根据“SAS”基本事实作出DEF,使DEFABC【答案】见解析。【解析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了全等三角形的判定先作一个DA,然后在D的两边分别

    21、截取EDBA,DFAC,连接EF即可得到DEF。如图,DEF即为所求25.(2019湖北孝感)如图,RtABC中,ACB90,一同学利用直尺和圆规完成如下操作:以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是 ;(2)过点D作DFAB交AB的延长线于点F,若AC12,BC5,

    22、求tanDBF的值【答案】见解析。【解析】(1)由作图知CEAB,BD平分CBF,据此得123,结合CEB+32+CDE90知CEBCDE,从而得出答案;CDCE,由作图知CEAB,BD平分CBF,123,CEB+32+CDE90,CEBCDE,CDCE,故答案为:CDCE;(2)证BCDBFD得CDDF,从而设CDDFx,求出AB13,知sinDAF,即,解之求得x,结合BCBF5可得答案BD平分CBF,BCCD,BFDF,BCBF,CBDFBD,在BCD和BFD中,BCDBFD(AAS),CDDF,设CDDFx,在RtACB中,AB13,sinDAF,即,解得x,BCBF5,tanDBF2

    23、6.( 2019广东模拟题)如图,点D在ABC的AB边上,且ACD=A(1)作BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明)【答案】见解析。【解析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得BDE=BDC,根据三角形内角与外角的性质可得A=BDE,再根据同位角相等两直线平行可得结论DEACDE平分BDC,BDE=BDC,ACD=A,ACD+A=BDC,A=BDC,A=BDE,DEAC27.(2019平谷二模)下面是小元设计的“经过已知直线外一点作这条直线的垂线”的尺

    24、规作图过程已知:如图1,直线l和l外一点P求作:直线l的垂线,使它经过点P作法:如图2,(1)在直线l上任取一点A; (2)连接AP,以点P为圆心,AP长为半径作弧,交直线l于点B(点A,B不重合);(3)连接BP,作APB的角平分线,交AB于点H;(4)作直线PH,交直线l于点H所以直线PH就是所求作的垂线根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形 (保留作图痕迹);(2)完成下面的证明.证明:PH平分APB, APH= PA= , PH直线l于H( )(填推理的依据) 【答案】见解析。【解析】(1)如图所示。(2)证明:PH平分APB, APH= BPH PA= PB ,

    25、PH直线l于H( 等腰三角形三线合一 )28.(2019甘肃庆阳)已知:在ABC中,ABAC(1)求作:ABC的外接圆(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC的外接圆的圆心O到BC边的距离为4,BC6,则SO 【答案】见解析。【解析】本题考查作图复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作O,O即为所求如图O即为所求(2)在RtOBE中,利用勾股定理求出OB即可解决问题设线段BC的垂直平分线交BC于点E由题意OE4,BEEC3,在RtOBE中,OB

    26、5,S圆O522529.(2019广东广州)如图,O的直径AB10,弦AC8,连接BC(1)尺规作图:作弦CD,使CDBC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长【答案】见解析。【解析】(1)以C为圆心,CB为半径画弧,交O于D,线段CD即为所求如图,线段CD即为所求(2)连接BD,OC交于点E,设OEx,构建方程求出x即可解决问题连接BD,OC交于点E,设OExAB是直径,ACB90,BC6,BCCD,OCBD于EBEDE,BE2BC2EC2OB2OE2,62(5x)252x2,解得x,BEDE,BOOA,AD2OE,四边形ABCD的周长6+6+10+

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020中考数学复习专题尺规作图(解析版).docx
    链接地址:https://www.163wenku.com/p-307523.html
    烟花三月012
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库