高中数学选修4-4坐标系(课堂PPT)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学选修4-4坐标系(课堂PPT)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 坐标系 课堂 PPT 课件 下载 _其他_数学_高中
- 资源描述:
-
1、1xxz23思考:45思考:67思考:89根据几何特点选择适当的直角坐标系的一些规则:根据几何特点选择适当的直角坐标系的一些规则:(1)如果图形有对称中心,可以选择对称中心为坐标原点;)如果图形有对称中心,可以选择对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能地在坐标轴上。)使图形上的特殊点尽可能地在坐标轴上。10 xO 2 y=sinxy=sin2x二二. .平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换思考:思考:(1 1)怎样由正弦曲线)怎样由正弦曲线y=sinxy=sinx得到曲线得到曲
2、线y=sin2x?y=sin2x?11 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐标不变,保持纵坐标不变,将横坐标将横坐标x缩为原来的缩为原来的 ,就得到正弦曲线,就得到正弦曲线y=sin2x.12通常把通常把 叫做平面直角坐标系中的一个压缩变换。叫做平面直角坐标系中的一个压缩变换。1坐标对应关系为:坐标对应关系为:112xxyy 上述的变换实质上就是一个坐标的压缩变换,即:上述的变换实质上就是一个坐标的压缩变换,即: 设设P( (x, ,y) )是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,保持纵坐标保持纵坐标不变,将横坐标不变,将横坐标x缩为原来缩
3、为原来 ,得到点得到点12,p x y 12(2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲得到曲线线y=3sinx?写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sinxyx13在正弦曲线上任取一点在正弦曲线上任取一点P(x,y),保持横坐标),保持横坐标x不变,不变,将纵坐标伸长为原来的将纵坐标伸长为原来的3倍,就得到曲线倍,就得到曲线y=3sinx。(2)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sinx?写出写出其坐标变换。其坐标变换。通常把通常把 叫做平面直角坐标系中的一个坐标伸叫做平面直角坐标系中的一个坐标伸长变换。长变换。223xxyy 设
4、点设点P(x,y)经变换得到点为)经变换得到点为,pxy14(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sin2x? 写出其坐标变换。写出其坐标变换。O 2 y=sinxy=3sin2xyx15 在正弦曲线在正弦曲线y=sinx上任取一点上任取一点P(x,y),保持纵坐,保持纵坐标不变,将横坐标标不变,将横坐标x缩为原来的缩为原来的 ,在此基础上,在此基础上,将纵坐标变为原来的将纵坐标变为原来的3倍,就得到正弦曲线倍,就得到正弦曲线y=3sin2x.12设点设点P(x,y)经变换得到点为)经变换得到点为通常把通常把 叫做平面直角坐标系中叫做平面直角坐标系中的一个坐标伸
5、缩变换。的一个坐标伸缩变换。3(3)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=3sin2x? 写出其坐标变换。写出其坐标变换。3123xxyy 16定义:设定义:设P(x,y)是平面直角坐标系中任意一点,是平面直角坐标系中任意一点,在变换在变换(0):(0)xxyy 的作用下,点的作用下,点P(x,y)对应对应 称称 为为平面直角坐标系中的伸缩变换平面直角坐标系中的伸缩变换。 4注注 (1) (2)把图形看成点的运动轨迹,平面图)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不)在伸
6、缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。变,在同一直角坐标系下进行伸缩变换。0,0,p x y 17例例2:在直角坐标系中,求下列方程所对应的图形经过:在直角坐标系中,求下列方程所对应的图形经过伸缩变换伸缩变换后的图形。后的图形。(1)2x+3y=0; (2)x2+y2=1 213xxyy 解: 由伸缩变换230 xy代入1213xxyy得0 xy得23xxyy 221xy代入得22149xy 1222133xxxxyyyy 由 伸 缩 变 换得181.在同一直角坐标系下,求满足下列图形的伸缩变换:在同一直角坐标系下,求满足下列图形的伸缩变换:曲线曲线4x2+9y2=36
展开阅读全文