全国通用2019届高考数学大一轮复习第十二章概率随机变量及其分布12.6离散型随机变量的均值与方差正态分布学案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全国通用2019届高考数学大一轮复习第十二章概率随机变量及其分布12.6离散型随机变量的均值与方差正态分布学案.doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2019 高考 数学 一轮 复习 第十二 概率 随机变量 及其 分布 12.6 离散 均值 方差 正态分布 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、=【 ;精品教育资源文库 】 = 12.6 离散型随机变量的均值与方差、正态分布 最新考纲 考情考向分析 1.理解取有限个值的离散型随机变量的均值、方差的概念 2.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义 3.会求简单离散型随机变量的均值、方差,并能解决一些简单问题 . 以理解均值与方差的概念为主,经常以频率分布直方图为载体,考查二项分布、正态分布的均值与方差掌握均值与方差、正态分布的性质和求法是解题关键高考中常以解答题形式考查、难度为中等偏上 . 1离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为 X x1 x2 ? xi ? xn P p1 p2 ? pi
2、 ? pn (1)均值 称 E(X) x1p1 x2p2 ? xipi ? xnpn为随机变量 X 的均值或 数学期望 它反映了离散型随机变量取值的 平均水平 (2)方差 称 D(X) ni 1(xi E(X)2pi为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的 平均偏离程度 ,并称其算术平方根 D?X?为随机变量 X 的 标准差 2均值与方差的性质 (1)E(aX b) aE(X) b. (2)D(aX b) a2D(X) (a, b 为常数 ) 3两点分布与二项分布的均值、方差 (1)若随机变量 X 服从两点分布,则 E(X) p, D(X) p(1 p) (2)若 X
3、 B(n, p),则 E(X) np, D(X) np(1 p) =【 ;精品教育资源文库 】 = 4正态分布 (1)正态曲线:函数 , (x) 22()21 e2x ?, x( , ) ,其中实数 和 为参数 ( 0, R)我们称函数 , (x)的图象为 正态分布密度曲线 ,简称正态曲线 (2)正态曲线的特点 曲线位于 x 轴 上方 ,与 x 轴不相交; 曲线 是单峰的,它关于直线 x 对称; 曲线在 x 处达到峰值 1 2 ; 曲线与 x 轴之间的面积为 1; 当 一定时,曲线的位置由 确定,曲线随着 的变化而沿 x 轴平移,如图甲所示; 当 一定时,曲线的形状由 确定, 越小 ,曲线越
4、“ 瘦高 ” ,表示总体的分布越集中; 越大 ,曲线越 “ 矮胖 ” ,表示总体的分布越分散,如图乙所示 (3)正态分布的定义及表示 一般地,如果对于任何实数 a, b(a2c 1) P(X2c 1) P(X4,根据正态曲线的对称性,当函数 f(x) x2 4x 没有零点的概率是 12时, 4. 题型一 离散型随机变量的均值、方差 命题点 1 求离散型随机变量的均值、方差 典例 某银行规定,一张银行卡若在一天内出现 3 次密码尝试错误,该银行卡将被锁定小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的 6 个密码之一,小王决定从中不重复地随机选择 1 个进行
5、尝试若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定 =【 ;精品教育资源文库 】 = (1)求当天小王的该银行卡被锁定的概率; (2)设当天小王用该银行卡尝试密码的次数为 X,求 X 的分布列和均值 解 (1)设 “ 当天小王的该银行卡被锁定 ” 的事件为 A, 则 P(A) 56 45 34 12. (2)依题意得, X 所有可能的取值是 1,2,3. 又 P(X 1) 16, P(X 2) 56 15 16, P(X 3) 56 451 23. 所以 X 的分布列为 X 1 2 3 P 16 16 23 所以 E(X) 1 16 2 16 3 23 52. 命题点 2 已知离散型
6、随机变量的均值与方差,求参数值 典例 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得 1 分,取出 一个黄球得 2 分,取出一个蓝球得 3 分 (1)当 a 3, b 2, c 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 为取出此 2 球所得分数之和,求 的分布列; (2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 为取出此球所得分数若E( ) 53, D( ) 59,求 a b c. 解 (1)由题意得 2,3,4,5,6, 故 P( 2) 3366 14, P( 3) 23266 13, P( 4) 231
7、 2266 518, P( 5) 22166 19, P( 6) 1166 136. 所以 的分布列为 2 3 4 5 6 P 14 13 518 19 136 =【 ;精品教育资源文库 】 = (2)由题意知 的分布列为 1 2 3 P aa b c ba b c ca b c 所以 E( ) aa b c 2ba b c 3ca b c 53, D( ) ? ?1 53 2 aa b c ? ?2 53 2 ba b c ? ?3 53 2 ca b c 59 , 化 简 得? 2a b 4c 0,a 4b 11c 0. 解得 a 3c, b 2c,故 a b c 321. 思维升华 离散
展开阅读全文
链接地址:https://www.163wenku.com/p-30662.html