2.1.1 倾斜角与斜率课件新人教A版(2019)高中数学选择性必修第一册高二第二章.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2.1.1 倾斜角与斜率课件新人教A版(2019)高中数学选择性必修第一册高二第二章.pptx》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.1.1 倾斜角与斜率课件新人教A版2019高中数学选择性必修第一册高二第二章 2.1 倾斜角 斜率 课件 新人 2019 高中数学 选择性 必修 一册 第二 下载 _选择性必修 第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、1.了解直线的斜率和倾斜角的概念.2.理解直线倾斜角的唯一性及直线斜率的存在性.3.了解斜率公式的推导过程,会应用斜率公式求直线的斜率.学习目标XUE XI MU BIAO内容索引知识梳理题型探究随堂演练课时对点练1知识梳理PART ONE知识点一直线的倾斜角1.倾斜角的定义(1)当直线l与x轴相交时,我们以x轴为基准,x轴 与直线l向上的方向之间所成的角叫做直线l的倾斜角.(2)当直线l与x轴平行或重合时,规定它的倾斜角为0.2.直线的倾斜角的取值范围为 .正向0180知识点二直线的斜率1.直线的斜率把一条直线的倾斜角的 叫做这条直线的斜率,斜率常用小写字母k表示,即k .正切值tan 2.
2、斜率与倾斜角的对应关系图示 倾斜角(范围)009090900不存在k03.过两点的直线的斜率公式过两点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式为k .思考任何一条直线都有倾斜角吗?不同的直线其倾斜角一定不相同吗?答案由倾斜角的定义可以知道,任何一条直线都有倾斜角;不同的直线其倾斜角有可能相同,如平行的直线其倾斜角是相同的.思考辨析 判断正误SI KAO BIAN XI PAN DUAN ZHENG WU1.任一直线都有倾斜角,都存在斜率.()2.任何一条直线有且只有一个斜率和它对应.()3.若直线的倾斜角为,则0180.()4.经过两点的直线的斜率公式适用于任何直线.
3、()2题型探究PART TWO一、直线的倾斜角例1(1)已知直线l经过第二、四象限,则直线l的倾斜角的取值范围是A.090 B.90180C.90180 D.0180解析直线倾斜角的取值范围是0180,又直线l经过第二、四象限,所以直线l的倾斜角的取值范围是90180.(2)(多选)设直线l过坐标原点,它的倾斜角为,如果将l绕坐标原点按逆时针方向旋转45,得到直线l1,那么l1的倾斜角可能为A.45 B.135C.135 D.45解析根据题意,画出图形,如图所示:通过图象可知:当0135,l1的倾斜角为45;当135180时,l1的倾斜角为45180135.反思感悟直线倾斜角的概念和范围(1)
4、求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.(2)注意倾斜角的范围.跟踪训练1(1)已知直线l向上方向与y轴正向所成的角为30,则直线l的倾斜角为_.60或120解析有两种情况:如图(1),直线l向上方向与x轴正向所成的角为60,即直线l的倾斜角为60.如图(2),直线l向上方向与x轴正向所成的角为120,即直线l的倾斜角为120.(2)已知直线l1的倾斜角115,直线l1与l2的交点为A,直线l1和l2向上的方向所成的角为120,如图,则直线l2的倾斜角为_.135解析设直线l2的倾斜角为2,l1和l2向上的方向所成的角为120,所以BAC1
5、20,所以21201135.二、直线的斜率例2经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角.(1)求经过两点A(2,3),B(4,5)的直线的斜率,并确定直线的倾斜角;即tan 1,又0180,所以倾斜角45.(2)求经过两点A(a,2),B(3,6)的直线的斜率.解当a3时,斜率不存在;反思感悟求直线的斜率(1)运用公式的前提条件是“x1x2”,当直线与x轴垂直时,斜率是不存在的.(2)斜率公式与两点P1,P2的先后顺序无关.跟踪训练2(1)若直线的倾斜角为135,则直线的斜率为_.1(2)过点P(2,m),Q(m,4)的直线的斜率为1,则m的值为_.1三、倾斜角
6、和斜率的应用例3已知两点A(3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点.(1)求直线l的斜率k的取值范围;要使l与线段AB有公共点,则直线l的斜率k的取值范围是(,11,).(2)求直线l的倾斜角的取值范围.解由题意可知直线l的倾斜角介于直线PB与PA的倾斜角之间,又PB的倾斜角是45,PA的倾斜角是135,的取值范围是45135.反思感悟倾斜角和斜率的应用(1)倾斜角和斜率都可以表示直线的倾斜程度,二者相互联系.(2)涉及直线与线段有交点问题常数形结合利用公式求解.跟踪训练3已知A(3,3),B(4,2),C(0,2).(1)求直线AB和AC的斜率;(2)若点D在线段
展开阅读全文