专题训练13: 椭圆的应用问题 -新人教A版(2019)高中数学选择性必修第一册高二上学期.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专题训练13: 椭圆的应用问题 -新人教A版(2019)高中数学选择性必修第一册高二上学期.docx》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题训练13: 椭圆的应用问题 -新人教A版2019高中数学选择性必修第一册高二上学期 专题 训练 13 椭圆 应用 问题 新人 2019 高中数学 选择性 必修 一册 上学 下载 _选择性必修 第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、专题13:椭圆的应用问题一、单选题1如图所示,“嫦娥四号”卫星沿地月转移轨道飞向月球后,在月球附近一点变轨进入以月球球心为一个焦点的椭圆轨道绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道绕月飞行,若用和分别表示椭圆轨道和的焦距,用和分别表示椭圆轨道和的长轴长,给出下列式子:;.其中正确的是( )ABCD2设函数的图象由方程确定,对于函数给出下列命题:,恒有成立;:的图象上存在一点,使得到原点的距离小于;:对于,恒成立;则下列正确的是( )ABCD3光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射
2、出,如图,一个光学装置由有公共焦点、的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为( )ABCD42020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为86
3、00公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为( )A0.32B0.48C0.68D0.825某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()Ar+RBr+RCr+RDr+R6椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为( )A2B4C6D87已知水平地面上有一
4、篮球,球的中心为,在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,椭圆中心O为原点,设椭圆的方程为,篮球与地面的接触点为H,则的长为( )ABCD8人造地球卫星绕地球运行遵循开普勒行星运动定律:如图,卫星在以地球的中心为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地心的连线)在相同的时间内扫过的面积相等设该椭圆的长轴长、焦距分别为,.某同学根据所学知识,得到下列结论:卫星向径的取值范围是卫星向径的最小值与最大值的比值越大,椭圆轨道越扁卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间卫星运行速度在近地点时最小,在远地点
5、时最大其中正确的结论是( )ABCD9如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则ABCD10仿照“Dandelin双球”模型,人们借助圆柱内的两个内切球完美的证明了平面截圆柱的截面为椭圆面如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为ABCD二、多选题11如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点处变轨进入以月球
6、球心为一个焦点的椭圆轨道绕月飞行,之后卫星在点处第二次变轨进入仍以为一个焦点的椭圆轨道绕月飞行,且轨道的右顶点为轨道的中心.设椭圆与的长半轴长分别为和,半焦距分别为和,离心率分别为和,则下列结论正确的是( )ABCD椭圆比椭圆更扁12嫦娥奔月是中华民族的千年梦想.2020年12月我国嫦娥五号“探月工程”首次实现从月球无人采样返回.某校航天兴趣小组利用计算机模拟“探月工程”,如图,飞行器在环月椭圆轨道近月点制动(俗称“踩刹车”)后,以的速度进入距离月球表面的环月圆形轨道(月球的球心为椭圆的一个焦点),环绕周期为,已知远月点到月球表面的最近距离为,则( )A圆形轨道的周长为B月球半径为C近月点与远
7、月点的距离为D椭圆轨道的离心率为13椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点,是它的焦点,长轴长为,焦距为,静放在点的小球(小球的半径不计),从点沿直线出发,经椭圆壁反弹后第一次回到点时,小球经过的路程可以是( )ABCD14某颗人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,如图所示,已知它的近地点(离地面最近的点)距地面千米,远地点(离地面最远的点)距地面千米,并且三点在同一直线上,地球半径约为千米,设该椭圈的长轴长、短轴长、焦距分别为,则ABCD三、填空题15从椭圆的一个焦点发出的光线射到椭圆上
8、的点,反射后光线经过椭圆的另一个焦点,事实上,点处的切线垂直于的角平分线,已知椭圆的两个焦点是,点是椭圆上除长轴端点外的任意一点,的角平分线交椭圆的长轴于点,则的取值范围是_.16如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分,过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上.由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,则截口所在椭圆的离心率为_.17如图是数学家Germinal Dandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的
9、小球,使得它们分别与圆锥的侧面、截面相切,设图中球,球的半径分别为和,球心距离,截面分别与球,球切于点,(,是截口椭圆的焦点),则此椭圆的离心率等于_参考答案1C【分析】对于,由建立联系;对于,根据椭圆的性质及不等式的可加性可以判断;对于,对式子先变形后就可以对作出判断.【解析】由,得,故符合题意;由图可知,故不符合题意;,故不符合题意,符合题意.故选:C【点评】 解决本题的关键一是;二是对的变形.2C【分析】分类讨论去绝对值可得函数的图象,根据图象以及椭圆和双曲线的性质可得答案.【解析】当时,方程化为表示椭圆的一部分;当时,方程化为表示双曲线的一部分;当时,方程化为表示双曲线的一部分;所以函
展开阅读全文
链接地址:https://www.163wenku.com/p-3061318.html