第二章直线和圆的方程单元复习讲义-新人教A版(2019)高中数学选择性必修第一册高二上学期.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第二章直线和圆的方程单元复习讲义-新人教A版(2019)高中数学选择性必修第一册高二上学期.doc》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 直线 方程 单元 复习 讲义 新人 2019 高中数学 选择性 必修 一册 上学 下载 _选择性必修 第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、选修一 直线和圆的方程-单元复习一、直线与方程知识点一、倾斜角与斜率倾斜角():把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角。斜率(K):已知两点,如果,则直线PQ的斜率为:();。随堂练习: 1、已知点,则直线的倾斜角为( ) A B C D2、已知直线经过两点,则直线的倾斜角的取值范围是_.3、已知坐标平面内三点 (1)求直线的斜率和倾斜角;(2) 若为的边上一动点,求直线的斜率的取值范围.知识点二、直线与直线的位置关系平行垂直随堂练习:1、已知直线的倾斜角为,且直线,则直线的斜率为( )A. B. C. D.2、若经过点(m,3)和(2,m)的直线l与斜率为4的
2、直线互相垂直,则m的值是_3、已知直线经过点,直线经过点.(1)当时,试判断直线与的位置关系; (2)若,试求实数的值.知识点三、直线方程名称已知条件方程适用范围一般式二元一次方程系数A、B、C(A、B不同时为0)平面内任意一条直线斜截式(1)直线的斜率k;(2)y轴上的截距b。直线的斜率k存在(反斜截式)(1)直线的斜率k的倒数;(2)轴上的横截距。直线的斜率k的倒数存在点斜式(1)直线的斜率k;(2)直线上一点直线的斜率k存在两点式直线上一点,直线不与坐标轴平行或重合截距式直线在坐标轴上的两截距:横截距与纵截距直线不与坐标轴平行或重合,且不过原点随堂练习:1、直线y=2x+1在x轴上的截距
3、为() A.-B.C.-1D.12、经过P(4,0),Q(0,-3)两点的直线方程是() A.+=1B.+=1 C.-=1D.-=13、已知直线l与两坐标轴围成的三角形的面积为12,分别求满足下列条件的直线l的斜截式方程:(1)过定点A(-2,3)且斜率为正. (2)斜率为.4、在ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC边的中点N在x轴上,求:(1)顶点C的坐标. (2)直线MN的方程.知识点四、直线的交点坐标方程组的解一组无数组无解直线与的公共点一个无数零直线与的位置关系相交重合平行随堂练习:1、若三条直线相交于一点,则( ) A. B. C.2 D.2、已
4、知在平行四边形中,点是边的中点,与交于点.(1)求直线的方程; (2)求点的坐标.知识点五、距离公式(1)中点坐标:点点 则中点;(2)平面点与点:点 点 则;(3)空间点与点:点 点 则(4)平面点与线:点 直线,则(5)平面线于线:直线,直线,则随堂练习:1、原点到直线x2y50的距离为() A1 B. C2 D.2、直线与间的距离为_.3、已知直线过两直线的交点,且两点到直线的距离相等,求直线的方程. 二、圆与方程知识点六、圆的方程名称方程圆心半径标准方程 一般方程参数方程 (为参数)随堂练习:1、圆x2+y2-ax-2y+1=0关于直线x-y+1=0对称的圆的方程是x2+y2-4x+3
5、=0,则a的值为()A.0B.1C.2D.32、已知圆x2+y2-2x-8y+1=0的圆心到直线ax-y+1=0的距离为1,则a=.3、已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y-1=0上,且圆心在第二象限,半径为,求圆的一般方程.知识点七、点与圆、直线与圆、圆与圆的位置关系点与圆的位置关系几何方法判断标准方程判断一般方程判断点在圆外点到圆心的距离点在圆上点到圆心的距离点在圆外点到圆心的距离直线与圆的位置关系几何法代数法直线与圆相离圆心到直线的距离直线与圆相切圆心到直线的距离直线与圆相交圆心到直线的距离圆与圆的位置关系几何法代数法公切线条数外离4外切3相交2内切1内含0随堂练习
6、:1、已知两圆,(1)m取何值时两圆外切? (2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长2、设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|= 3、已知点M(1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍(1)求曲线E的方程;(2)已知m0,设直线l:xmy1=0交曲线E于A,C两点,直线l2:mx+ym=0交曲线E于B,D两点,若CD的斜率为1时,求直线CD的方程课 后 练 习1、在下列四个命题中,正确的共有( )坐标平面内的任何一条直线均有倾斜角和斜率 直线的倾斜角的取值范围是 若一条直线的
7、斜率为则此直线的倾斜角为 若一条直线的倾斜角为,则此直线的斜率为 A.0个B.1个 C.2个 D.3个2、如图,已知直线l1的倾斜角是150,l2l1,垂足为B.l1,l2与x轴分别相交于点C,A,l3平分BAC,则l3的倾斜角为_ (2) (3)3、如图,在菱形中,求对角线与所在直线的斜率. 4、下列说法中正确的有( )若两条直线斜率相等,则两直线平行; 若,则;若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;若两条直线的斜率都不存在,则两直线平行. A.1个B.2个 C.3个D.4个5、直线l1,l2的斜率k1,k2是关于k的方程2k24km0的两根,若l1l2,则m
8、_,若l1l2,则m_.6、已知平行四边形中,(1)求点的坐标; (2)试判断平行四边形是否为菱形.7、若3x1-4y1=2,3x2-4y2=2,则经过A(x1,y1)和B(x2,y2)的直线l的方程为.8、已知直线与直线的交点在轴上,则的值为_.9、已知三边所在直线的方程分别为,. (1)判断的形状; (2)当边上的高为1时,求实数的值.10、圆x2+y2=8内有一点P(2,-1),AB为过点P的弦,则AB的中点Q的轨迹方程为.11、若圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0和直线l2:x+3y=0都对称,则D=,E=.12、已知圆C:x2+(y1)2=5,直线:mxy+
9、1m=0,(1)求证:对任意mR,直线与圆C总有两个不同的交点(2)设与圆C交于A、B两点,若,求的倾斜角;(3)求弦AB的中点M的轨迹方程;13、已知点P(x,y)在圆x2+y26x6y+14=0上(1)求的最大值和最小值(2)求x2+y2+2x+3的最大值与最小值;(3)求x+y的最大值与最小值直线和圆的方程-单元复习一、直线与方程知识点一、倾斜角与斜率倾斜角():把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角。斜率(K):已知两点,如果,则直线PQ的斜率为:();。随堂练习: 1、已知点,则直线的倾斜角为( ) A B C D答案:B 解析:设直线AB的倾斜角为,
10、). 则,.2、已知直线经过两点,则直线的倾斜角的取值范围是_.答案:或 解析:易知直线的斜率存在,设直线的倾斜角为,则,当且仅当,即时,等号成立,又,所以或.3、已知坐标平面内三点 (1)求直线的斜率和倾斜角;(2) 若为的边上一动点,求直线的斜率的取值范围.答案:(1)由斜率公式,得,所以直线的倾斜角为,直线的倾斜角为,直线的倾斜角为.(2)如图,当直线由逆时针转到时,直线与线段恒有交点,即在线段上,此时上由增大到,所以的取值范围为.知识点二、直线与直线的位置关系平行垂直随堂练习:1、已知直线的倾斜角为,且直线,则直线的斜率为( )A. B. C. D.答案:C 解析:由题意可得直线的斜率
11、为,由线,得直线的斜率为.2、若经过点(m,3)和(2,m)的直线l与斜率为4的直线互相垂直,则m的值是_答案 解析:由题意可知kl,又因为kl, 所以,解得m.3、已知直线经过点,直线经过点.(1)当时,试判断直线与的位置关系; (2)若,试求实数的值.答案:(1)当时,故.又,从而.(2),的斜率存在.当时,则,直线的斜存在,不符合题意,舍去.当时,. 故,解得或. 综上,实数的值为3或-4知识点三、直线方程名称已知条件方程适用范围一般式二元一次方程系数A、B、C(A、B不同时为0)平面内任意一条直线斜截式(1)直线的斜率k;(2)y轴上的截距b。直线的斜率k存在(反斜截式)(1)直线的斜
12、率k的倒数;(2)轴上的横截距。直线的斜率k的倒数存在点斜式(1)直线的斜率k;(2)直线上一点直线的斜率k存在两点式直线上一点,直线不与坐标轴平行或重合截距式直线在坐标轴上的两截距:横截距与纵截距直线不与坐标轴平行或重合,且不过原点随堂练习:1、直线y=2x+1在x轴上的截距为() A.-B.C.-1D.1 选A.由直线y=2x+1,令y=0,解得x=-. 所以直线在x轴上的截距为-.2、经过P(4,0),Q(0,-3)两点的直线方程是() A.+=1B.+=1 C.-=1D.-=1选C.因为由点坐标知直线在x轴,y轴上截距分别为4,-3,所以直线方程为+=1.3、已知直线l与两坐标轴围成的
13、三角形的面积为12,分别求满足下列条件的直线l的斜截式方程:(1)过定点A(-2,3)且斜率为正. (2)斜率为.(1)设直线l的方程为y-3=k(x+2)(k0),令x=0,得y=2k+3,令y=0,得x=-2,由题意可得|2k+3|-2|=24,得k=, 故所求直线方程为y=x+6.(2)设直线l的方程为y=x+b,令x=0,得y=b, 令y=0,得x=-2b.由已知可得|b|-2b|=24,解得b=2, 故所求直线方程为y=x+2或y=x-2.4、在ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC边的中点N在x轴上,求:(1)顶点C的坐标. (2)直线MN的方程
展开阅读全文