全国版2019版高考数学一轮复习第10章概率第3讲几何概型学案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全国版2019版高考数学一轮复习第10章概率第3讲几何概型学案.doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 2019 高考 数学 一轮 复习 10 概率 几何 概型学案 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、=【 ;精品教育资源文库 】 = 第 3 讲 几何概型 板块一 知识梳理 自主学习 必备知识 考点 1 几何概型 1几何概型的定义 如果每个事件发生的概率只与构成该事件区域的 长度 (面积或体积 )成比例,那么称这样的概率模型为几何概率模型,简称几何概型 2几何概型的两个基本特点 考点 2 几何概型的概率公式 P(A) 构成事件 A的区域长度 ?面积或体积 ?试验的全部结果所构成的区域长度 ?面积或体积 ?. 必会结论 几种常见的几何概型 (1)与长度有关的几何概型,其基本事件只与一个连续的变量有关; (2)与面积有关 的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量
2、分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题 考点自测 1判断下列结论的正误 (正确的打 “” ,错误的打 “”) (1)在一个正方形区域内任取一点的概率是零 . ( ) (2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等 ( ) (3)在几何概型定义中的区 域可以是线段、平面图形、立体图形 ( ) (4)随机模拟方法是以事件发生的频率估计概率 ( ) (5)与面积有关的几何概型的概率与几何图形的形状有关 ( ) =【 ;精品
3、教育资源文库 】 = (6)从区间 1,10内任取一个数,取到 1 的概率是 P 19.( ) 答案 (1) (2) (3) (4) (5) (6) 2 2017 全国卷 如图,正方形 ABCD 内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是 ( ) A.14 B. 8 C.12 D. 4 答案 B 解析 不妨设正方形 ABCD 的边长为 2,则正方形内切圆的半径为 1, S 正方形 4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得 S 黑 S 白 12S 圆 2 ,所以由几何概型知所求概率
4、 P S黑S正方形24 8.故选 B. 3 2018 重庆一中 模拟 在 2,3上随机取一个数 x,则 (x 1)(x 3)0 的概率为( ) A.25 B.14 C.35 D.45 答案 D 解析 由 (x 1)(x 3)0 ,得 1 x3. 由几何概型得所求概率为 45. 4 2018 衡水中学调研 已知正方体 ABCD A1B1C1D1内有一个内切球 O,则在正方体 ABCD A1B1C1D1内任取点 M,点 M 在球 O 内的概率是 ( ) A. 4 B. 8 C. 6 D.12 答案 C 解析 设正方体棱长为 a,则正方体的体积为 a3,内切球的体积为 43 ? ?a2 3 16 a
5、3,故 M 在球 O 内的概率为16 a3a3 6. 5 2016 全国卷 从区间 0,1随机抽取 2n 个数 x1, x2, ? , xn, y1, y2, ? , yn,构成 n 个数对 (x1, y1), (x2, y2), ? , (xn, yn),其中两数的平方和小于 1 的数对共有 m 个,=【 ;精品教育资源文库 】 = 则用随机模拟的方法得到的圆周率 的近似值为 ( ) A.4nm B.2nm C.4mn D.2mn 答案 C 解析 设由? 0 xn10 yn1 ,构成的正方形的面积为 S, x2n y2n0,解得0x4 或 8x12,在数轴上表示为 由几何概型概率公式,得概率
6、为 812 23.故选 C. (2)某路公共汽车每 5 分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过 3 分钟的概率是 _ 答案 35 解析 本题可以看成向区间 0,5 内均匀投点,设 A 某乘客候车时间不超过 3分钟 ,则 P(A) 区间 2, 5的长度区间 0, 5的长度 35. 考向 与面积有关的几何概型 命题角度 1 与平面图形面积有关的问题 例 2 2015 陕西高考 设复数 z (x 1) yi(x, y R),若 |z|1 ,则 y x 的概率为 ( ) A.34 12 B.12 1 C.14 12 D.12 1 答案 C 解析 |z|1 , (x 1)2 y2
7、1 ,表示以 M(1,0)为圆心, 1 为半径的圆及其内部,该圆的面积为 . 易知直线 y x 与圆 (x 1)2 y2 1 相交于 O(0,0), A(1,1)两点,作图如右: =【 ;精品教育资源文库 】 = OMA 90 , S 阴影 4 1211 4 12. 故所求的概率 P S阴 影S M4 12 1412 . 命题角度 2 与线性规划交汇的问题 例 3 2018 湖北联考 在区间 0,4上随机取两个实数 x, y,使得 x 2y8 的概率为 ( ) A.14 B.316 C.619 D.34 答案 D 解析 如图所示,? 0 x4 ,0 y4 表示的平面区域为正方形 OBCD 及其
展开阅读全文