非平衡态热力学-四川大学课程中心课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《非平衡态热力学-四川大学课程中心课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 非平衡态热力学 四川大学 课程 中心 课件
- 资源描述:
-
1、南开大学南开大学Nankai Unversity会议报告会议报告 物理化学课程如何介绍非平衡态热力学物理化学课程如何介绍非平衡态热力学南开大学化学系 朱志昂E-mail:会议报告会议报告Nankai Unversity主讲人:2朱志昂目录目录一、一、平衡态热力学特点及局限性平衡态热力学特点及局限性二、二、线性非平衡态热力学线性非平衡态热力学1. 局域平衡假设局域平衡假设2. 昂萨格倒易关系昂萨格倒易关系3. 熵产生原理熵产生原理4. 最小熵产生原理最小熵产生原理三、三、非线性非平衡态热力学非线性非平衡态热力学1. 非线性非平衡定态稳定性非线性非平衡定态稳定性 判据判据-超熵产生判据超熵产生判据
2、2. 自组织现象自组织现象3. 耗散结构耗散结构 会议报告会议报告Nankai Unversity主讲人:3朱志昂一、平衡态热力学特点及局限性一、平衡态热力学特点及局限性1. 热力学发展的三个阶段热力学发展的三个阶段 第一阶段第一阶段: 平衡态热力学平衡态热力学(即经典热力学即经典热力学) 热力学三大定律为基础热力学三大定律为基础,一百多年历史一百多年历史。 第二阶段第二阶段: 线性非平衡态热力学线性非平衡态热力学 20世纪世纪30年代年代,昂萨格昂萨格 (Lars Onsager 1903一一1976,出生于挪威奥斯陆出生于挪威奥斯陆,1928年移居美国年移居美国,1945年加入美国籍年加入
3、美国籍, 1968年获诺贝尔化学奖。年获诺贝尔化学奖。) 提出了线性唯象系数的对称原理提出了线性唯象系数的对称原理一一 昂萨格倒易关系昂萨格倒易关系,它是不可逆热力学最早的理论。它是不可逆热力学最早的理论。会议报告会议报告Nankai Unversity主讲人:4朱志昂一、平衡态热力学特点及局限性一、平衡态热力学特点及局限性 2020世纪世纪4040年代年代, ,普利高津普利高津 ( (IlyaIlya PrigoginePrigogine, ,比利时比利时物理化学家,物理化学家,19171917年年1 1月月2525日出生在莫斯科,日出生在莫斯科,20032003年年5 5月月2828日去世
4、。十月革命时流亡到比利时定居,在布鲁塞尔自由日去世。十月革命时流亡到比利时定居,在布鲁塞尔自由大学获理学博士学位,并留校任教。大学获理学博士学位,并留校任教。19671967年后任美国设在年后任美国设在德克萨斯州大学(奥斯汀)的统计力学和热力学研究中心德克萨斯州大学(奥斯汀)的统计力学和热力学研究中心的负责人。的负责人。) ) 根据局域平衡假设和昂萨格倒易关系根据局域平衡假设和昂萨格倒易关系, ,将热将热力学第二定律推广到敞开体系力学第二定律推广到敞开体系, ,提出了最小熵产生原理提出了最小熵产生原理, ,建建立了线性非平衡态热力学。立了线性非平衡态热力学。会议报告会议报告Nankai Unv
5、ersity主讲人:5朱志昂一、平衡态热力学特点及局限性一、平衡态热力学特点及局限性 第三阶段第三阶段: 非线性非平衡态热力学非线性非平衡态热力学 普利高津及其学派把不可逆过程热力学推广到远离平普利高津及其学派把不可逆过程热力学推广到远离平衡的非平衡非线性区,提出了著名的衡的非平衡非线性区,提出了著名的耗散结构耗散结构理论,这理论,这是热力学理论发展史上的一个重要里程碑,因而荣获是热力学理论发展史上的一个重要里程碑,因而荣获1977年诺贝尔化学奖。年诺贝尔化学奖。 第二阶段和第三阶段是交叉进行的,这两个阶段是当第二阶段和第三阶段是交叉进行的,这两个阶段是当今热力学研究的前沿领域。今热力学研究的
6、前沿领域。会议报告会议报告Nankai Unversity主讲人:6朱志昂2.平衡态热力学特点及局限性平衡态热力学特点及局限性(1)研究的对象是处于平衡态的宏观物体,不考虑结构研究的对象是处于平衡态的宏观物体,不考虑结构, 不考虑时间。不考虑时间。(2)讨论的是平衡态或是可逆过程的热力学问题,对不可讨论的是平衡态或是可逆过程的热力学问题,对不可逆过程只是在始态和终态都是在平衡态的情况下,根据逆过程只是在始态和终态都是在平衡态的情况下,根据热力学第二定律建立了一些热力学不等式,判别过程进热力学第二定律建立了一些热力学不等式,判别过程进行的方向,并不涉及不可逆过程本身。自然界实际发生行的方向,并不
7、涉及不可逆过程本身。自然界实际发生的过程都是不可逆的。热力学判据只适用孤立体系或封的过程都是不可逆的。热力学判据只适用孤立体系或封闭体系,而实际上大多是敞开体系。闭体系,而实际上大多是敞开体系。 一、平衡态热力学特点及局限性一、平衡态热力学特点及局限性会议报告会议报告Nankai Unversity主讲人: 认为体系总是自发地趋于平衡、趋于无序,实际上趋认为体系总是自发地趋于平衡、趋于无序,实际上趋向平衡、趋向无序并不是自然界的普遍规律。经典热力学向平衡、趋向无序并不是自然界的普遍规律。经典热力学深刻阐明了平衡状态下各种化学现象的规律,确立了能量深刻阐明了平衡状态下各种化学现象的规律,确立了能
8、量转换关系,明确指出宏观过程的方向和极限,为化工生产转换关系,明确指出宏观过程的方向和极限,为化工生产提供了理论基础。但经典热力学无法揭示实际的不可逆过提供了理论基础。但经典热力学无法揭示实际的不可逆过程的内在规律。程的内在规律。 7朱志昂一、平衡态热力学特点及局限性一、平衡态热力学特点及局限性会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 要解决的问题:要解决的问题: 如何判别变化的方向和限度如何判别变化的方向和限度?1. 局域平衡假设局域平衡假设 (1) 稳态稳态 热力学平衡态热力学平衡态(equilibrium state) 不但要求
9、体系没有宏观位移,而且要求孤立体系中各部不但要求体系没有宏观位移,而且要求孤立体系中各部分的所有宏观性质都不随时间而变。非孤立体系的平衡状态必分的所有宏观性质都不随时间而变。非孤立体系的平衡状态必须同时满足下列两个条件:须同时满足下列两个条件:(i) 体系中各部分的所有宏观性质体系中各部分的所有宏观性质都不随时间而变;都不随时间而变;(ii) 当体系与环境完全隔离开后,体系中各当体系与环境完全隔离开后,体系中各部分的所有宏观性质都不起变化。部分的所有宏观性质都不起变化。8朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学9朱志昂稳态稳态
10、(steady state) 处于恒定的外部限制条件(如固定的边界条件或浓处于恒定的外部限制条件(如固定的边界条件或浓度限制条件等)时,体系内部发生宏观变化,则体系处度限制条件等)时,体系内部发生宏观变化,则体系处于非平衡态。经过一定时间体系达到一种在宏观上不随于非平衡态。经过一定时间体系达到一种在宏观上不随时间变化的恒稳状态时间变化的恒稳状态, 此状态称为非平衡稳态或简称为此状态称为非平衡稳态或简称为稳态稳态(或称定态或称定态)。 稳态体系的内部宏观过程仍然在进行稳态体系的内部宏观过程仍然在进行着。着。会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平
11、衡态热力学(2) 局域平衡假设局域平衡假设 在非平衡稳态条件下,经典热力学的温度、压力、在非平衡稳态条件下,经典热力学的温度、压力、熵函数、熵函数、Gibbs函数等的定义无效或消失了。因此,经函数等的定义无效或消失了。因此,经典热力学不适用于生命体系,也不适用宇宙。典热力学不适用于生命体系,也不适用宇宙。 为了能继为了能继续采用经典热力学的一些函数和关系式,并将其延伸到续采用经典热力学的一些函数和关系式,并将其延伸到非平衡稳态,为此,布鲁塞尔(非平衡稳态,为此,布鲁塞尔(Brussel)学派的普利)学派的普利高津等人提出了如下的局域平衡假设:高津等人提出了如下的局域平衡假设:10朱志昂会议报告
12、会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 A) 将体系分成许多小体积单元(局域),每一个单将体系分成许多小体积单元(局域),每一个单 元在宏观上足够小,可以用其中任一点的性质来元在宏观上足够小,可以用其中任一点的性质来代表该单元的性质代表该单元的性质,但在微观上它仍然包含大量但在微观上它仍然包含大量粒子,能表达宏观统计的性质(如温度、压力、粒子,能表达宏观统计的性质(如温度、压力、熵等)。熵等)。11朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 B) 当某一局域在当某一局域在 t+
13、dt 时刻达到平衡(注意:时刻达到平衡(注意:整个体系尚未达到平衡),则该局域的热力整个体系尚未达到平衡),则该局域的热力学函数即可代表学函数即可代表 t 时刻该局域非平衡态的热时刻该局域非平衡态的热力学函数,整个体系的热力学函数就是各局力学函数,整个体系的热力学函数就是各局域热力学函数的加和。域热力学函数的加和。12朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学C) 以上得到的热力学函数之间仍然满足经典热力学以上得到的热力学函数之间仍然满足经典热力学 关系式。关系式。 应特别指出,局域平衡假设只适用于离平衡应特别指出,局域平衡假设只
14、适用于离平衡态不远的非平衡体系。例如扰动不大、分子碰撞态不远的非平衡体系。例如扰动不大、分子碰撞传能速率大于某不可逆过程速率。对化学反应则传能速率大于某不可逆过程速率。对化学反应则应符合应符合 Ea / RT5,对大多数,对大多数273K1000K间发间发生的化学反应是能满足这一条件的。生的化学反应是能满足这一条件的。13朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学2. 昂萨格(昂萨格(Onsager)倒易关系)倒易关系 (1)热力学力和流热力学力和流 在研究不可逆过程时,将势函数称为热力学力在研究不可逆过程时,将势函数称为热力学力
15、(简称力简称力)(X),由此引起的不可逆过程的速率称为流(),由此引起的不可逆过程的速率称为流(J)。例如温度)。例如温度势势-(1/T)引起热传导,电池电动势引起热传导,电池电动势E引起电流引起电流I,化学势的负,化学势的负梯度梯度-(i/T)引起扩散,化学反应亲和势(引起扩散,化学反应亲和势(A/T)不为零引起)不为零引起化学反应趋向于化学平衡。热力学力是产生能量流和物质流的化学反应趋向于化学平衡。热力学力是产生能量流和物质流的推动力,流是热力学广度性质对时间的导数,而力是强度量的推动力,流是热力学广度性质对时间的导数,而力是强度量的差值。常见的热力学力与流的线性关系如差值。常见的热力学力
16、与流的线性关系如下下表所示。表所示。14朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 热力学力与流的线性关系15朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学(2) 昂萨格(昂萨格(Onsager)倒易关系)倒易关系 若体系内部同时存在两种以上的不可逆过程,无论是若体系内部同时存在两种以上的不可逆过程,无论是哪一种性质的力与流,在耦合过程中,流与力的作用具有对易哪一种性质的力与流,在耦合过程中,流与力的作用具有对易性质,互相交换位置而不改变结果。描述各种不可逆过程的流性质,
17、互相交换位置而不改变结果。描述各种不可逆过程的流和力之间的线性唯象关系的唯象系数之间满足一种对称关系。和力之间的线性唯象关系的唯象系数之间满足一种对称关系。可以认为,在力可以认为,在力(X)与流与流(J)之间存在着线性关系,即之间存在着线性关系,即16朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学J = LX (1)L为唯象系数。若有几种不可逆过程能同时发生,且彼此影为唯象系数。若有几种不可逆过程能同时发生,且彼此影响,力和流之间的线性关系可表示为:响,力和流之间的线性关系可表示为:J1 = L11X1 + L12X2+ L1nXnJ
18、2 = L21X1 + L22X2+ L2nXn (2) Jn = Ln1X1 + Ln2X2+ LnnXn昂萨格通过论证提出,在唯象系数之间存在如下关系:昂萨格通过论证提出,在唯象系数之间存在如下关系:Lik = Lki (i,k=1,2,3,n) (3)17朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 这一关系式称为昂萨格倒易关系式。其物理意义是第这一关系式称为昂萨格倒易关系式。其物理意义是第 i 个个流的流的 Ji 与第与第 k 个力个力 Xk 之间的唯象系数之间的唯象系数 Lik 和第和第 k 个流的个流的 Jk与与第第 i
19、个力个力 Xi 之间的唯象系数之间的唯象系数 Lki 相等。在相等。在 (2)式中有多个唯象系式中有多个唯象系数,有了昂萨格倒易关系式后,可以将唯象系数的个数减少一数,有了昂萨格倒易关系式后,可以将唯象系数的个数减少一半,简化了求解不可逆过程中物理量的计算。昂萨格倒易关系半,简化了求解不可逆过程中物理量的计算。昂萨格倒易关系是不可逆过程热力学中的一个基本关系,昂萨格因此而获得是不可逆过程热力学中的一个基本关系,昂萨格因此而获得1968年诺贝尔化学奖。年诺贝尔化学奖。18朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学3. 熵产生原理熵产
20、生原理 (1)孤立体系熵增加原理孤立体系熵增加原理 对任一封闭体系中发生的任一给定过程,判断它能否发对任一封闭体系中发生的任一给定过程,判断它能否发生,必须同时求出环境的熵变,然后求总体(相当于孤立体生,必须同时求出环境的熵变,然后求总体(相当于孤立体系)的熵变。孤立体系是不可能实现的,因为宇宙线或高能系)的熵变。孤立体系是不可能实现的,因为宇宙线或高能粒子总是不断地射到地球上。另外,敞开体系也不能忽视,粒子总是不断地射到地球上。另外,敞开体系也不能忽视,例如,对生物体来说,与环境不断地交换物质是它们生存的例如,对生物体来说,与环境不断地交换物质是它们生存的必要条件。必要条件。19朱志昂会议报
21、告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学(2)任意体系熵产生原理任意体系熵产生原理 1945年年,比利时人比利时人 Prigogine 将熵增加原理推广到将熵增加原理推广到任意体系(封闭的、敞开的和孤立的),给出了一个普遍任意体系(封闭的、敞开的和孤立的),给出了一个普遍的熵表述式。任一体系在平衡态有一个状态函数的熵表述式。任一体系在平衡态有一个状态函数S 的确定的确定值,它是广度性质。当体系的状态发生变化后,体系的熵值,它是广度性质。当体系的状态发生变化后,体系的熵变可分为两部分之和,称为外熵变和内熵变之和。变可分为两部分之和,称为外熵变
22、和内熵变之和。20朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学熵流熵流(entropy flux) 外熵变是由体系与环境通过界面进行热交换和物质交换外熵变是由体系与环境通过界面进行热交换和物质交换时进入或流出体系的熵流所引起的。熵流的概念是把熵当作时进入或流出体系的熵流所引起的。熵流的概念是把熵当作一种流体,正如曾经把热当作流体(称为一种流体,正如曾经把热当作流体(称为“热质热质”)一样。)一样。把熵和能量建立在同样基础上,它们两者都有真实性,或两把熵和能量建立在同样基础上,它们两者都有真实性,或两者都没有。但熵和能量又不同,熵可以
23、产生,却不能被消灭者都没有。但熵和能量又不同,熵可以产生,却不能被消灭;而能量则不生不灭。;而能量则不生不灭。21朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学熵产生熵产生(entropy production) 内熵变是由于体系内部发生的不可逆过程(例如,热内熵变是由于体系内部发生的不可逆过程(例如,热传导、扩散、化学反应等)所引起的熵产生。做功(内功传导、扩散、化学反应等)所引起的熵产生。做功(内功和外功)只能引起熵产生,不引起熵流。和外功)只能引起熵产生,不引起熵流。22朱志昂会议报告会议报告Nankai Unversity主讲
24、人:二、线性非平衡态热力学二、线性非平衡态热力学孤立体系孤立体系 S孤立孤立。任意体系中发生一个微小过程任意体系中发生一个微小过程 dS体系体系deSdiS (4)式中式中deS 代表外熵变,代表外熵变,diS 代表内熵变。这样从形式上看,代表内熵变。这样从形式上看,diS不再与不再与dS环境环境有关有关熵产生原理熵产生原理 diS “” 不可逆过程不可逆过程 (5) “=” 可逆过程可逆过程23朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学 “体系的熵产生永不为负值,在可逆过程中为零,在不体系的熵产生永不为负值,在可逆过程中为零,在
25、不可逆过程中大于零可逆过程中大于零”,这就是熵产生原理,它是熵增加原理,这就是熵产生原理,它是熵增加原理的推广,适用于任意体系中的任何过程。的推广,适用于任意体系中的任何过程。熵的平衡方程式: dS / dt = deS / dt diS / dt (6) 由于由于deS / dt 可以是正、负和零,而可以是正、负和零,而diS / dt 总是大于零总是大于零或等于零,因此可得下列一些结论:或等于零,因此可得下列一些结论:24朱志昂会议报告会议报告Nankai Unversity主讲人:二、线性非平衡态热力学二、线性非平衡态热力学() 绝热封闭体系或孤立体系的熵永不减少,可逆过程中熵不绝热封闭
展开阅读全文