课程标准解读课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《课程标准解读课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课程标准 解读 课件
- 资源描述:
-
1、欢迎各位老师欢迎各位老师来参加本次教师培训来参加本次教师培训义务教育数学课程标准解读之一从从“双基双基”到到“四基四基”问题与思考问题与思考1、什么是数学课程标准数学课程标准?2、为什么反复学习数学课程标准数学课程标准?3、新课标新课标有哪些改进和发展的地方?数学课程标准是国家教育部对数学课程标准是国家教育部对义务教育阶段数学学习的基本要求义务教育阶段数学学习的基本要求的纲领性文件。的纲领性文件。1.数学课程标准很重要;数学课程标准很重要;2.数学课程标准有较大修改;数学课程标准有较大修改;3.数学课程标准解读认识数学课程标准解读认识不一致;不一致;新课标的改进和发展(关注点):新课标的改进和
2、发展(关注点):理念、关键词、课程目标、教学观。数学教育的基本理念数学教育的基本理念 2011版提出的数学教育的基本理念就是指版提出的数学教育的基本理念就是指导数学教育的课程观、学习观、评价观和导数学教育的课程观、学习观、评价观和信息科技观,它是义务教育阶段数学教育信息科技观,它是义务教育阶段数学教育中对数学课程、课程内容、教学活动、学中对数学课程、课程内容、教学活动、学习评价和现代信息技术认识的基本准则,习评价和现代信息技术认识的基本准则,是构建整个课程标准的基石,是数学教育是构建整个课程标准的基石,是数学教育的总的指导思想。的总的指导思想。课程理念的变化课程理念的变化 (1)“三句三句”变
3、变“两句两句” (2)“6条条”变变“5条条”良好的数学教育就是:良好的数学教育就是:在数学活动中,能够探索数学的本质,体验在数学活动中,能够探索数学的本质,体验到数学的精神到数学的精神 ,进而学到数学知识,学会,进而学到数学知识,学会数学的思维,掌握好数学的方法,逐步形成数学的思维,掌握好数学的方法,逐步形成一定的数学能力,慢慢感悟和理解数学的思一定的数学能力,慢慢感悟和理解数学的思想,在不知不觉中提升数学素养。想,在不知不觉中提升数学素养。6条:数学课程数学数学学习条:数学课程数学数学学习 数学教数学教 学评价信息技术。学评价信息技术。 5条:数学课程课程内容数学教学活动条:数学课程课程内
4、容数学教学活动学习评价信息技术。学习评价信息技术。关键词的变化关键词的变化数感数感 符号感符号感 空间观念空间观念 统计观念统计观念 应用意识应用意识 推理能力推理能力 原来实验稿原来实验稿符号意识符号意识几何直观几何直观运算能力运算能力模型思想模型思想创新意识创新意识数据分析观念数据分析观念数感数感 符号感符号感 空间观念空间观念 统计观念统计观念 应用意识应用意识 推理能力推理能力 原来实验稿原来实验稿课程目标的变化课程目标的变化u基础知识基础知识u基本技能基本技能u基本思想基本思想u基本活动经验基本活动经验“四基四基”u基础知识基础知识u基本技能基本技能“双基双基”课程目标的变化课程目标
5、的变化u分析问题分析问题u解决问题解决问题“两能两能”u提出问题提出问题u发现问题发现问题u分析问题分析问题u解决问题解决问题“四能四能”数学观的变化数学观的变化实验稿对数学观的认识实验稿对数学观的认识 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。,形成方法和理论,并进行广泛应用的过程。 数学作为一种普通适应的技术,有助于人们收集、整理、描数学作为一种普通适应的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价述信息,建立数学模型,进而解决问题,直接为社会创造价值
6、。值。 数学是人们生活、劳动和学习必不可少的工具,能够帮助人数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人们推想和方法,是一切重大技术发展的基础;数学在提高人们推理能力、抽象能力、想象力和创造力等方面有着独特的作用理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是;数学是人类的一种文
7、化,它的内容、思想、方法和语言是现代文明的组成部分。现代文明的组成部分。数学观的变化数学观的变化2011年版稿对数学观的认识年版稿对数学观的认识 数学是研究数量关系和空间形式的科学数学是研究数量关系和空间形式的科学 数学作为对于客观现象抽象概括而逐渐形成的数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具科学语言与工具 数学是人类文化的重要组成部分,数学素养是数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。现代社会每一个公民应该具备的基本素养。 要发挥数学在培养人的思维能力和创新能力方要发挥数学在培养人的思维能力和创新能力方面不可替代的作用。面不可替代的作用。
8、正确的数学教学观:正确的数学教学观: 教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学中最重要的是考虑什么?数学教学中最重要的是考虑什么? 数学教学活动“应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。”内内 容容 提提 要要 四、四、结束语结束语 三、三、从从“双基双基”到到“四基四基”的发展的发展变化变化 二、二、“双基双基”的发展的发展一、对数学课程目标一、对数学课程目标的认的认识识问题与思考 何为
9、目标? 何为数学课程目标? 数学课程目标包括哪几部分? 数学课程目标细分为几个领域? 义务教育阶段数学课程的总体目标是什么?就是对数学学习的预期。准确地说,就是对数学学习的预期。准确地说,数学课程目标是指社会对学生通过数学课程目标是指社会对学生通过一段时间的数学学习之后所产生的一段时间的数学学习之后所产生的行为或心理变化的一种预期。行为或心理变化的一种预期。结果目标和过程目标知识技能、数学思考、问题解决、情感态度义务教育阶段数学课程的总体目标义务教育阶段数学课程的总体目标1.获得适应社会生活和进一步发展所必需的数学的基获得适应社会生活和进一步发展所必需的数学的基础知识、基础技能、基本思想、基本
10、活动经验;础知识、基础技能、基本思想、基本活动经验;2.体会数学知识之间、数学与其他学科之间、数学与体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能增强发现和提出问题的能力、分析和解决问题的能力;力;3.了解数学的价值,提高学习数学的兴趣,增强学好了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。新意识和实事求是的科学态度。一、一、“双基双基”的发展的发展 1
11、988年的年的九年义务教育全日制中小学数学九年义务教育全日制中小学数学教学大纲(初审稿)教学大纲(初审稿)对对“双基双基”给出了明给出了明确具体的界定确具体的界定,即,即基础知识基础知识包括包括“概念、法概念、法则、性质、公式、公理、定理等,以及由其则、性质、公式、公理、定理等,以及由其内容反映出来的内容反映出来的数学思想和方法数学思想和方法”;基本技基本技能能是是“按照一定的程序与步骤来进行运算、按照一定的程序与步骤来进行运算、作图、画图、简单的推理作图、画图、简单的推理”。一、一、“双基双基”的发展的发展 2001年颁布的年颁布的全日制义务教育数学课程标准(实验稿)全日制义务教育数学课程标
12、准(实验稿)提出,数学教学要使学生提出,数学教学要使学生“获得适应未来社会生活和进获得适应未来社会生活和进一步发展所必需的重要一步发展所必需的重要数学知识数学知识(包括数学事实、数学活(包括数学事实、数学活动经验)以及基本的动经验)以及基本的数学思想方法数学思想方法和必要的和必要的应用技能应用技能;初;初步学会运用数学的思维方式去观察、分析现实社会,去解步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强决日常生活中和其他学科学习中的问题,增强应用应用数学的数学的意识意识”。 课程目标包括课程目标包括“知识与技能知识与技能”、“过程与方法过程与方法”、“情
13、感情感态度与价值观态度与价值观”。一、一、“双基双基”的发展的发展 2011年颁布的年颁布的义务教育数学课程标准(义务教育数学课程标准(2011年版)年版)提提出,数学教学要使学生出,数学教学要使学生“获得适应社会生活和进一步发展获得适应社会生活和进一步发展所必需的数学的所必需的数学的基础知识、基本技能基础知识、基本技能、基本思想、基本活基本思想、基本活动经验动经验。体会数学知识之间、数学与其他学科之间、数学。体会数学知识之间、数学与其他学科之间、数学与生活之间的与生活之间的联系联系,运用数学的思维方式进行,运用数学的思维方式进行思考思考,增强,增强发现和提出问题的能力、分析和解决问题的能力发
14、现和提出问题的能力、分析和解决问题的能力。” 课程目标包括课程目标包括“知识技能知识技能”、“数学思考数学思考”、“解决问题解决问题”、“情感态度情感态度”。 三、从三、从“双基双基”到到“四基四基”的的变化变化基础知识基础知识 基本技能基本技能基础知识基础知识 基本技能基本技能 基本思想基本思想 基本活动经验基本活动经验 (一)(一)基础知识基础知识 基本技能基本技能(二)(二)基本思想基本思想(三)(三)基本活动经验基本活动经验 三三、从、从“双基双基”到到“四基四基”的的变化变化(一)基础知识(一)基础知识 基本技能基本技能九年义务教育全日制初级中学数学教学大纲(实验修订版),九年义务教
15、育全日制初级中学数学教学大纲(实验修订版),2000基础知识基础知识:数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。基本技能基本技能:能够按照一定的程序与步骤进行运算、作图或画图、进行简单的推理。 “双基”内容需要与时俱进,增添估算、算法、数感、符号感、统计初步等内容。 只坚持“双基”难以培养创新型和实践型人才。(案例:数感)(案例:数感)课标(课标(2011版)版)数感是关于数与数量、数量关系、运算结果估计等方面的感悟。数感是关于数与数量、数量关系、运算结果估计等方面的感悟。案例案例1 1200张纸大约有多厚?你的张纸大约有多厚?你的1200步大约有多长?
16、步大约有多长?1200名学生名学生站成的队形需要多大场地?站成的队形需要多大场地?案例案例2:0的认识的认识(一上)(一上)数数 感感三三、从、从“双基双基”到到“四基四基”的的变变化化(二)基本思想(二)基本思想。 思想:思维活动的结果。属于理性认识。一般也称“观念”。人们的社会存在,决定人们的思想。 想法;念头。进行思维活动。 辞海三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二)基本思想基本思想基本思想数学思想方法数学思想方法 三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二)基本思想基本思想包括哪些方面?基本思想包括哪些方面?抽象抽象从许多事
17、或物中,单纯提取某一数学特性加以认识的过程。是形成概念的必要手段。 推理推理从一个或几个已有数学事实或规则,运用特定方法或法则,推断出某些数学结论的思维过程。是数学的基本思维方式。模型模型根据特定目的和问题,采用数学语言表征所研究对象的主要特征、关系等的一种数学结构。是联系数学与外部世界的基本途径。审美审美对数学美(如简洁、和谐、统一、对称等)的感受、领会和欣赏。是认识和掌握数学的重要方式之一。数学的基本特征:一般性、严谨性和应用的广泛性靠的是抽象、推理和模型数学的基本特征:一般性、严谨性和应用的广泛性靠的是抽象、推理和模型三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二
18、)基本思想抽象抽象从许多事或物中,单纯提取某一数学特性加以认识的过程。是形成概念的必要手段 。分类思想集合思想对应思想变与不变思想符号化思想有限无限思想三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二)基本思想抽象抽象分类是指将对象按特定属性划分类别,使其更有规律。分类思想分类思想集合思想对应思想变中有不变思想符号化思想有限无限思想案例案例1:说一说,可以怎样分?说一说,可以怎样分?案例案例2:小数除法可分为几类?小数除法可分为几类?按除数分:按除数分:除数是整数的小数除法除数是整数的小数除法 和和 除数是小数的小数除法除数是小数的小数除法人、课程、运算、加法人、课程、运
19、算、加法三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二)基本思想抽象抽象集合是指具有某种共同性质的数学对象的总体。分类思想集合思想集合思想对应思想变中有不变思想符号化思想有限无限思想案例案例2:两种都喜欢两种都喜欢案例案例1:12的因数有哪些?的因数有哪些?1 2 3 4 6 12自然数、分、小、负、平面图自然数、分、小、负、平面图三三、从、从“双基双基”到到“四基四基”的的变化变化(二)基本思想(二)基本思想抽象抽象对应是指一个集合中的任意元素,在特定法则的作用下,可得到另一集合中的一个(或多个)元素。分类思想集合思想对应思想对应思想变中有不变思想符号化思想有限无限思
展开阅读全文