云计算实际案例课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《云计算实际案例课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算 实际 案例 课件
- 资源描述:
-
1、云计算案例云计算案例刘刘 驰驰Outline(一) 云计算案例p案例一:Amazon Web Service p案例二:Yahoo!p案例三:eBayp案例四:Baidup案例五:Google(二) 商业模式Amazon Web ServicepAWSs core servicesncomputenstoragendatabasenMessagingpAWS客户广泛,其中包括著名的互联网公司和创业型公司p2010年,AWS部门的收入已达5亿美元,已经成为Amazon收入的重要组成部分AWS - ComputepAmazon Elastic Computing Cloud (EC2)nIaaS,
2、 provide compute resources through virtualizationnUsers can dynamically apply/stop resources based on their needspAmazon Elastic MapReducenBased on Amazon EC2 and Amazon S3, build Hadoop frameworkAWS - StoragepAmazon Simple Storage Service (S3)nExtendable storage sizenOther AWS services can directly
3、 access data on S3AWS - DatabasepAmazon SimpleDBnBase on S3 and EC2nLightweight data store and query servicespAmazon Relational Database Service (RDS)nProvide functionalities to with MySQLnSupport Oracle Database 11gAWS - MessagingpAmazon Simple Queue Service (SQS)n提供计算机之间传递和存储消息服务pAmazon Simple Not
4、ification Service (SNS)n在云中建立、操作和发送通知的Web服务pAmazon Simple Email Service (SES)n提供高扩展的大量事务性邮件发送服务ExampleYahoo! Cloud ServicesUsersApplicationsFunctional CloudServicesHorizontal Cloud Services Physical LayerY!OS, BOSS, YQL, APT, Analytics, Storage, Batch, Edge Serving,Yahoo! Cloud Services: Focus on Pa
5、aS offeringsUsersApplicationsFunctional CloudServicesHorizontal Cloud Services Physical LayerIaaSPaaSSaaSpHorizontal Cloud Storage & HadoopnAnalyze extremely large data setspFunctional Cloud Content OptimizationnRate content items based on various parameterspApplication Yahoos Front PagenDisplay “hi
6、gh rating” items to the right usersnBenefit consumers and advertisers and grow Yahoo!s revenueProduct: Front PageProduct: The InquisitorpHorizontal Cloud HadoopnAnalyze large search-index data sets pFunctional Cloud - BOSS nExpose the data in a structured, open, flexible and “cloud like” waypApplica
7、tions - iPhoneTM InquisitornLeverage BOSS to provide innovative consumer experiencenBenefit consumers and grow Yahoo!s revenueHorizontal Cloud ServicesUsersApplicationsFunctional CloudServicesHorizontal Cloud Services Physical LayerHorizontal Cloud ServicespOptimized for Yahoo!-scalenYahoo!-internal
8、 focusnData processing and serving environmentspDrive faster innovation and agilitynShorter product development cyclesnReduce labor and costs for infrastructurepMulti-year effortnStrategic investment across the companyHorizontal Cloud Services: Conceptual ViewCommon Approaches to QA, Production Engi
9、neering,Performance Engineering, Datacenter Management, and OptimizationID & Account ManagementShared InfrastructureProvisioning & Virtualization (Xen)Simple APIs Operational StorageStructured, unstructuredBatch Storage & ProcessingHadoop, PIGEdge Content ServicesCaching, ProxiesOnline ServingWeb, D
10、ataSecurity and AuthenticationMetering, BillingMonitoring & QoSHorizontal Cloud Services: Use CasesAds OptimizationContent OptimizationSearch IndexImage/Video Storage &DeliveryMachine Learning (e.g. Spam filters)AttachmentStorageYahoo! runs a large Hadoop Clustersp25,000+ nodes nClusters of up to 4,
11、000 nodesp4 Tiers of clustersnDevelopment & Testing, POCs, Science & Research, ProductionpTerasort Benchmarksn62 seconds to sort One Terabyte (run on 1,500 nodes)n16.25 hours to sort One Petabyte (run on 3,700 nodes)pWebmap applicationn490 TB shufflingn280 TB outputCase Study - Search AssistpDatabas
12、e for Search Assist is built using Hadoop. p3 years of log-data, 20-steps of map-reduce Leverage Hadoops scalability, load balancing and resiliency Simplified access, flexibility for rapid innovation (from C+ to Python)Before HadoopAfter HadoopTime26 days20 minutesDevelopment Time2-3 weeks2-3 days32
13、Functional Cloud ServicesROI & InnovationUsersApplicationsFunctional CloudServicesHorizontal Cloud Services Physical LayerFunctional Cloud ServicespProvides functional capabilities for applicationsnHelp developers to accomplish integrated web experiences in a faster and easier waynProvide common set
14、 of functional “building blocks”p “Powered by” the horizontal cloud servicesnAbstracts infrastructure services from the Applicationpe.g., Storage, Compute, Serving, Robustness and ScalabilitynSelf-Served, Global, Managed, Elastic and MeteredFunctional Cloud Services: YQL & BOSSp A single endpoint se
展开阅读全文