概率论和数理统计-概率6-2-45页PPT文档课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论和数理统计-概率6-2-45页PPT文档课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 概率 45 PPT 文档 课件
- 资源描述:
-
1、数理统计数理统计第二节第二节 样本及抽样分布样本及抽样分布统计量与经验分布函数统计量与经验分布函数统计三大抽样分布统计三大抽样分布几个重要的抽样分布定理几个重要的抽样分布定理课堂练习课堂练习小结小结 布置作业布置作业数理统计数理统计 由样本值去推断总体情况,需要对样本值进由样本值去推断总体情况,需要对样本值进行行“加工加工”,这就要构造一些样本的函数,它把,这就要构造一些样本的函数,它把样本中所含的(某一方面)的信息集中起来样本中所含的(某一方面)的信息集中起来.1. 统计量统计量 这种这种不含任何未知参数的样本的函数称为统不含任何未知参数的样本的函数称为统计量计量. 它是完全由样本决定的量它
2、是完全由样本决定的量.一、统计量与经验分布函数一、统计量与经验分布函数数理统计数理统计定义定义.),(,),(,21212121个个统统计计量量称称是是一一中中不不含含未未知知参参数数,则则的的函函数数,若若是是的的一一个个样样本本,是是来来自自总总体体设设nnnnXXXggXXXXXXgXXXX请注意请注意 :.),X(),(,X21212121的的观观察察值值计计量量也也是是统统则则是是一一个个样样本本的的观观察察值值的的一一个个样样本本是是来来自自总总体体设设nnnnXXgxxxgxxxXXX数理统计数理统计 几个常见统计量几个常见统计量样本平均值样本平均值niiXnX11它反映了它反映
3、了总体均值总体均值的信息的信息样本方差样本方差niiXXnS122)(11它反映了总体它反映了总体方差的信息方差的信息 niiXnXn12211样本标准差样本标准差 niiXXnS12)(11数理统计数理统计nikikXnA11它反映了总体它反映了总体k 阶矩的信息阶矩的信息样本样本k阶原点矩阶原点矩样本样本k阶中心矩阶中心矩nikikXXnB1)(1 k=1,2,它反映了总体它反映了总体k 阶阶中心矩的信息中心矩的信息数理统计数理统计统计量的观察值统计量的观察值, 2 , 1)(11, 2 , 11;)(11)(11;111121212 kxxnbkxnxxnsxxnsxnxnikiknik
4、ikniiniinii数理统计数理统计请注意请注意 :., 2 , 11)(1 kXnAnXEkXkpnikikkk时时,存存在在,则则当当阶阶矩矩的的若若总总体体.),(),(2121为连续函数为连续函数其中其中可将上述性质推广为可将上述性质推广为由依概率收敛性质知,由依概率收敛性质知,再再ggAAAgkpk .根据根据这就是矩估计法的理论这就是矩估计法的理论., 2 , 1)(,2121上上述述结结论论再再由由辛辛钦钦大大数数定定律律可可得得同同分分布布独独立立且且与与有有同同分分布布,独独立立且且与与由由事事实实上上nkXEXXXXXXXXkkikknkkn 数理统计数理统计 2. 经验
5、分布函数经验分布函数.,)(,2121的随机变量的个数的随机变量的个数中不大于中不大于表示表示的一个样本,用的一个样本,用是总体是总体设设xxxxxxsFXXXnn xxsnxFn)(1)(经验分布函数为经验分布函数为定义定义 2, 121,321, 0)()(21133xxxxFxFF若若若若若若的的观观察察值值为为,则则经经验验分分布布函函数数,具具有有一一个个样样本本值值设设总总体体例例数理统计数理统计)1, 2 , 1(, 1, 0)()(.,)()1()()1()()2()1(21 nkxxxxxnkxxxFxFxxxnxxxnkknnnn若若若若若若的观察值为的观察值为则经验分布函
6、数则经验分布函数如下:如下:将它们按大小次序排列将它们按大小次序排列值值的样本的样本是总体的一个容量为是总体的一个容量为一般,设一般,设经验分布函数经验分布函数 请看演示请看演示数理统计数理统计 二、统计三大抽样分布二、统计三大抽样分布)(22n记为记为2分布分布1、定义定义: 设设 相互独立相互独立, 都服从正态分布都服从正态分布N(0,1), 则称随机变量:则称随机变量: 所服从的分布为所服从的分布为自由度为自由度为 n 的的 分布分布.nXXX,21222212nXXX22分布是由正态分布派生出来的一种分布分布是由正态分布派生出来的一种分布. . 2 2 分布分布请看演示请看演示数理统计
7、数理统计2分布的密度函数为分布的密度函数为000)2(21);(2122xxexnnxfxnn来定义来定义.其中伽玛函数其中伽玛函数 通过积分通过积分0,)(01xdttexxt)(x注注.2 ,2.2 ,21),1(.2 ,21)1(1222222 nXXXniiii可加性知可加性知再由再由即即由定义由定义分布分布就是就是已知已知数理统计数理统计),(2N1. 设设 相互独立相互独立, 都服从正态分布都服从正态分布nXXX,21则则)()(121222nXnii).(21221nnXX 则则),(),(222121nXnX这个性质叫这个性质叫 分布的可加性分布的可加性.2分布的性质分布的性质
8、2 ,),(22充充分分大大时时则则当当 nn 3若若的的分分布布nnX2 近似正态分布近似正态分布N(0,1).(应用中心极限定理可得应用中心极限定理可得 ) 2设设 且且X1,X2相互独立,相互独立, 数理统计数理统计E(X)=n, D(X)=2n.,),(.222分分布布的的数数学学期期望望与与方方差差若若 n1)()(),1 , 0(2 iiiXDXENX故故事事实实上上,由由213)()()(2242 iiiXEXEXD.2)()(,)()(122122nXDDnXEEniinii 数理统计数理统计分布的分位点分布的分位点2. 5 )(222)()(ndyyfnP, 10 ,对对于于
9、给给定定的的正正数数称满足条件称满足条件.382.34)25()(.)()(20.1222 可通过查表求,例可通过查表求,例如图所示如图所示分位点,分位点,分布的上分布的上为为的点的点nnn)(2n 数理统计数理统计概率密度函数为:概率密度函数为: tntnnnthn212)1()2(2)1()( 定义定义: 设设XN(0,1) , Y , 且且X与与Y相互相互 独立,则称变量独立,则称变量nYXt 所服从的分布为所服从的分布为自由度为自由度为 n的的 t 分布分布.)(2n2、t 分布分布).(ntt记记为为分布的分布的分布又称为学生氏分布分布又称为学生氏分布)(. ntt数理统计数理统计分
10、布的性质:分布的性质:t)2()2()(, 0)(),(. 1 nnntDtEntttn与与方方差差为为:其其数数学学期期望望分分布布的的具具有有自自由由度度为为.21)(lim,.0. 222tnethntt 函函数数的的性性质质有有由由再再分分布布概概率率密密度度的的图图形形,其其图图形形近近似似于于标标准准正正态态充充分分大大时时当当对对称称分分布布的的密密度度函函数数关关于于).1 , 0(Ntn近似近似足够大时,足够大时,即当即当数理统计数理统计.)()(如图所示如图所示分位点分位点分布的上分布的上为为的点的点 ntnt)(nt )()()(ntdtthnttp称称满满足足条条件件,
11、对对于于给给定定的的分分布布的的分分位位点点, 10. 3 t数理统计数理统计)(nt )()(1ntntt 分位点的性质:分位点的性质:分布的上分布的上.1315. 2)15()(025. 0 tntt求得,例求得,例可查表可查表分位点分位点分布的上分布的上 zntn)(45的的值值,可可用用正正态态近近似似时时,对对于于常常用用的的当当请看演示请看演示t 分布分布数理统计数理统计由定义可见,由定义可见,3、F分布分布121nUnVF F(n2,n1),(),(2212nVnU 定义定义: 设设 U 与与V 相互相互独立,则称随机变量独立,则称随机变量服从服从自由度为自由度为n1及及 n2
12、的的F分布分布,n1称为称为第自第自由度由度,n2称为称为第二自由度第二自由度,记作,记作21nVnUF FF(n1,n2) .数理统计数理统计即它的数学期望并不依赖于第一自由度即它的数学期望并不依赖于第一自由度n1. 0001)()()()()()(2222221211211212121yyyyynnnnnnnnnnnn1.F分布的数学期望为分布的数学期望为:2)(22 nnFE若若n22若若FF(n1,n2), F的概率密度为的概率密度为分分布布的的性性质质F数理统计数理统计 ),(21nnF 2.F分布的分位数分布的分位数称满足条件称满足条件,对于给定的对于给定的, 10 ),(2121
13、)(),(nnFdyynnFFp.),(),(2121如如图图所所示示分分位位点点分分布布的的上上为为的的点点 nnFnnF分位点的性质:分位点的性质:分布的上分布的上 F),(1),(12211nnFnnF 357. 080. 21)12, 9(1)9 ,12(,.05. 095. 0 FFF例例分位点可查表求得分位点可查表求得分布的上分布的上数理统计数理统计三、几个重要的抽样分布定理三、几个重要的抽样分布定理有有和样本方差和样本方差则样本均值则样本均值来自总体的一个样本,来自总体的一个样本,是是,方差为,方差为的均值为的均值为设总体设总体2212,XSXXXXn 2(),(),E XD X
展开阅读全文