选修2-12.3.1双曲线及其标准方程(人教A版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《选修2-12.3.1双曲线及其标准方程(人教A版课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 12.3 双曲线 及其 标准 方程 人教 课件
- 资源描述:
-
1、2.3 双曲线2.3.1 双曲线及其标准方程 悲伤的双曲线悲伤的双曲线 如果我是双曲线,你就是那渐近线如果我是双曲线,你就是那渐近线 如果我是反比例函数,你就是那坐标轴如果我是反比例函数,你就是那坐标轴 虽然我们有缘,能够生在同一个平面虽然我们有缘,能够生在同一个平面 然而我们又无缘,漫漫长路无交点然而我们又无缘,漫漫长路无交点 为何看不见,等式成立要条件为何看不见,等式成立要条件 难道正如书上说的,无限接近不能达到难道正如书上说的,无限接近不能达到 为何看不见,明月也有阴晴圆缺为何看不见,明月也有阴晴圆缺 此事古难全,但愿千里共婵娟此事古难全,但愿千里共婵娟生活中的双曲线生活中的双曲线法拉利
2、主题公园法拉利主题公园巴西利亚大教堂巴西利亚大教堂麦克唐奈天文馆麦克唐奈天文馆1.1.记住双曲线的定义,会推导双曲线的标准记住双曲线的定义,会推导双曲线的标准 方程方程. .(重点)(重点)2.2.会用待定系数法确定双曲线的方程会用待定系数法确定双曲线的方程. .(难点)(难点)探究点探究点1 1 双曲线的定义双曲线的定义问题问题1 1:椭圆的定义?椭圆的定义?1F2F 0, c 0, cXYO yxM, 平面内与两个定点平面内与两个定点F F1 1,F F2 2的距的距离的和等于常数(大于离的和等于常数(大于F F1 1F F2 2)的点的轨迹叫做椭圆)的点的轨迹叫做椭圆. .问题问题2 2
3、:如果把椭圆定义中的如果把椭圆定义中的“距离之和距离之和”改为改为“距距离之差离之差”,那么点的轨迹是怎样的曲线?,那么点的轨迹是怎样的曲线?即即“平面内与两个定点平面内与两个定点F F1 1,F F2 2的距离的差等于非零常的距离的差等于非零常数的点的轨迹数的点的轨迹 ” ”是什么?是什么?如图如图(A)(A), |MF |MF1 1|-|MF|-|MF2 2|=|F|=|F2 2F|F|如图如图(B)(B),|MF|MF2 2|-|MF|-|MF1 1|=2|=2a a,由可得:由可得: |MF |MF1 1|-|MF|-|MF2 2|=2|=2a a(非零常数)(非零常数). . 上面两
4、条曲线合起来叫做上面两条曲线合起来叫做双曲线双曲线, ,每一条叫做双曲线每一条叫做双曲线的一支的一支. .看图分析动点看图分析动点M M满足的条件:满足的条件:=2a.=2a.即即|MF|MF1 1|-|MF|-|MF2 2|=-2|=-2a.a.图图图图 两个定点两个定点F F1 1,F F2 2双曲线的焦点双曲线的焦点; ;|F|F1 1F F2 2|=2c|=2c双曲线的焦距双曲线的焦距. .(1 1)2a2c2a0.2a0.双曲线定义双曲线定义|MF|MF1 1|-|MF|-|MF2 2|=2a ( 02a2c) |=2a ( 02a2c2a=2c,2a2c?不能不能. .若为若为0
5、0,曲线就是,曲线就是F F1 1F F2 2的垂直平分线了;的垂直平分线了;若若为为2a=2c,2a=2c,曲线应为两条射线;曲线应为两条射线;若为若为2a2c,2a2c,这样的曲线不存在这样的曲线不存在. .探究点探究点2 2 双曲线的标准方程双曲线的标准方程1. 1. 建系建系. . 如图建立直角坐标系如图建立直角坐标系xOyxOy,使,使x x轴经过两焦点轴经过两焦点F F1 1,F F2 2,y y轴为线轴为线段段F F1 1F F2 2的垂直平分线的垂直平分线. .F2 2F1 1MxOy 设设M(xM(x , y) , y)为双曲线上任意一点为双曲线上任意一点, ,双曲线的焦距双
6、曲线的焦距为为2c(c0),2c(c0),则则F F1 1(-c,0),F(-c,0),F2 2(c,0)(c,0),又设点,又设点M M与与F F1 1,F F2 2的距离的差的绝对值等于常数的距离的差的绝对值等于常数2a.2a.2. 2. 设点设点. .3.3.列式列式由定义可知,双曲线就是集合:由定义可知,双曲线就是集合: P= M P= M |MF|MF1 1 | - | MF | - | MF2 2| | | = 2a ,= 2a , 22222()() .xcyxcya 即即4.4.化简化简代数式化简得:代数式化简得:22222222()()yca xaa ca,222(),aca
7、 两两边边同同除除以以得得222221.xyaca 由双曲线的定义知,由双曲线的定义知,2c2a0,2c2a0,即即ca,ca,故故c c2 2-a-a2 20,0,令令c c2 2-a-a2 2=b=b2 2, ,其中其中b0,b0,代入上式,得:代入上式,得:2222100(,).xyabab 上面方程是双曲线的方程上面方程是双曲线的方程, ,我们把它叫做双曲我们把它叫做双曲线的标准方程线的标准方程. .它表示焦点在它表示焦点在x x轴上,焦点分别是轴上,焦点分别是F F1 1(-c,0),F(-c,0),F2 2(c,0)(c,0)的双曲线,这里的双曲线,这里c c2 2=a=a2 2+
8、b+b2 2. .想一想:想一想:焦点在焦点在y y轴上的双曲线的标准方程应该是轴上的双曲线的标准方程应该是什么?我们应该如何求解?什么?我们应该如何求解?2222100,).yxabab(定定 义义 方方 程程 焦焦 点点a,b,ca,b,c的的关系关系F F(c c,0 0)F F(c c,0 0)a0a0,b0b0,但,但a a不一不一定大于定大于b b,c c2 2=a=a2 2+b+b2 2ab0ab0,a a2 2=b=b2 2+c+c2 2|MF|MF1 1| |MF|MF2 2|=2a,02a|F|=2a,02a|F2a|F1 1F F2 2| | 椭椭 圆圆双曲线双曲线F F
9、(0 0,c c)F F(0 0,c c)222210()xyabab222210()yxabab2222100(,)xyabab2222100(,)yxabab【提升总结提升总结】例例 1 1 已已知双曲线两个焦点知双曲线两个焦点1( 5,0)F , ,2(5,0)F, ,双曲线双曲线上一上一点点P到到 , 距离差的绝对值等于距离差的绝对值等于 6 6, , 求求双曲线双曲线的的标准标准方程方程. . 1F2F解:解:因为双曲线的焦点在因为双曲线的焦点在x x轴上,所以设它的标准轴上,所以设它的标准方程为方程为2222100(,).xyabab因为因为2a=6,2c=10,2a=6,2c=1
10、0,所以所以a=3,c=5,a=3,c=5,所以所以2225316.b 因此,双曲线的标准方程为因此,双曲线的标准方程为221916.xy例例2 2 已知已知A,BA,B两地相距两地相距800 m,800 m,在在A A地听到炮弹爆炸声比地听到炮弹爆炸声比在在B B地晚地晚2 s,2 s,且声速为且声速为340 340 m/sm/s, ,求炮弹爆炸点的轨迹方求炮弹爆炸点的轨迹方程程. .分析分析: :首先根据题意首先根据题意, ,判断轨迹的形状判断轨迹的形状. .由声速及由声速及A A,B B两处听到爆炸声的时间差两处听到爆炸声的时间差, ,可知可知A A,B B两处与爆炸点的两处与爆炸点的距
展开阅读全文