电磁透镜的像差课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电磁透镜的像差课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁透镜 课件
- 资源描述:
-
1、 电子光学电子光学是研究带电粒子(电子、离子)在电场和磁场中运动,特别是在电场和磁场中偏转、聚焦和成像规律的一门科学。它与几何光学有很多相似之处: (1)几何光学是利用透镜使光线聚焦成像,而电子光学则利用电、磁场使电子束聚焦成像,电、磁场起着透镜的作用。 (2)几何光学中,利用旋转对称面作为折射面,而电子光学系统中,是利用旋转对称的电、磁场产生的等位面作为折射面。因此涉及的电子光学主要是研究电子在旋转对称电、磁场中的运动规律。 第一节 电子光学基础(3)电子光学可仿照几何光学把电子运动轨迹看成射线,并由此引入一系列的几何光学参数来表征电子透镜对于电子射线的聚焦成像作用。但应注意电镜中的电子光学
2、: (1)是真空中的静场,即电、磁场与时间无关,且处于真空中。 (2)入射的电子束轨迹必须满足离轴条件:(2)1dzr d(1)0| r |22一、光学显微镜的局限性 光学显微镜的“分辨本领”是表示一个光学系统刚能清楚地分开两个物点间的最小距离,距离越小,分辨能力越高。 阿贝根据衍射理论导出的光学透镜分辨能力的公式: nsina称为数值孔径,用N. A表示。 由(3)式可知,透镜的分辨率r值与N. A成反比, 与 值成正比,r值越小,分辨本领越高。 (3) (nm)nsin0.61r 当用可见光作光源,采用组合透镜、大的孔径角、高折射率介质浸没物镜时, N. A值可提高到1.6。最佳情况的透镜
3、分辨极限是200nm。 要进一步提高显微镜的分辨能力,就必须用更短波长的照明源。X射线波长很短,在0.05 10nm范围,但其聚焦成像较为困难。 电子束流具有波动性,且波长比可见光短得多。显然,如果用电子束做照明源制成电子显微镜将具有更高的分辨本领。 1924年,德布罗意提出了运动着的微观粒子也具有波粒二象性的假说。这个物质波的频率和波长与能量和动量之间的关系如下: (5) (4) E hPhv由此可得德布罗意波波长 (6) mvhPh 运动中的电子也必伴随着一个波电子波。 :(8) 251215020V.VVemh当加速电压较低时,vc(光速),电子质量近似于静止质量m0,由(6)、(7)式
4、整理得:(7) 221mveVE 一个初速度为零的电子,在电场中从电位为零的点受到电位为V的作用,其获得的动能和运动速度v之间的关系为:电子波长与其加速电压平方根成反比,加速电压越高,电子波长越短。(9) )109785. 01 (25.12)21 (26200VVcmeVVemh加速电压(kV)电子波长(nm)加速电压(kV)电子波长(nm)10.0388800.00418100.01221000.00370200.008592000.00251300.006985000.00142500.0053610000.00087 当加速电压较高时,电子运动速度增大,电子质量也随之增大,必须用相对论
5、进行校正:(10) 2meVv 即加速电压的大小决定了电子运动的速度。 电镜中,用静电透镜作电子枪,发射电子束;用磁透镜做会聚透镜,起成像和放大作用。静电透镜和磁透镜统称电子透镜,它们的结构原理由Husch奠定的。 1. 电子在静电场中的运动电子在静电场中的运动 电子在静电场中受到电场力的作用将产生加速度。初速度为0的自由电子从零电位到达V电位时,电子的运动速度v为: 当电子的初速度不为零、运动方向与电场力方向不一致时,电场力不仅改变电子运动的能量,而且也改变电子的运动方向。 如图1: AB上方电位为V1,下方为V2,电子通过V1、V2的界面时,电子的运动方向突变,电子运动的速度从v1变为v2
展开阅读全文