第9章-分解炉课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第9章-分解炉课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分解 课件
- 资源描述:
-
1、第第9章章 分解炉分解炉 分解炉作用:燃料燃烧、换热、碳酸盐分解 德国 多徳豪森水泥厂 油母页岩 日本石川岛公司与秩父水泥公司 SF炉 各种炉型 烧油烧煤 改造 成熟9.1 分解炉的工作参数分解炉的工作参数(1)分解率 入窑物料分解率是衡量分解炉工作效率的重要指标,也是表示生料中碳酸钙分解程度的参数。分解率分为表观分解率和真实分解率,生产上常用表观分解率表示。%100100100LLsLLsLs,L生料和入窑生料的烧失量,%21210100100100LLLLLmeefhfhtmfh出窑飞灰的数量,kg/kg;Lfh出窑飞灰的烧失量,%。 真实分解率et 1)气体停留时间 一般要求大于3.5s
2、。 2)物料停留时间 碳酸钙充分分解(大于90%),煤粉充分燃烧。(2)停留时间QVg36009.2 分解炉的分类分解炉的分类 9.2.1 分解炉的构造分解炉应有适当形状和大小的炉体,以供燃料在其中燃烧及物料分解。应有燃料及粉料加入装置和气流的进出口,而进出口的结构,应有利于造成炉内气流的适当运动,以利于燃料和料粉的悬浮,燃料的燃烧,温度的均布,实现料粉的快速传热、快速分解。9.2.2 分类分类(1)按制造厂命名分类天津院:TDF型南京院:NC-SST型成都院:CDC型(2)按分解炉内气体运动的主要流型分类 旋流式 喷腾式 悬浮式 沸腾式(流化床式) 生料及燃料在分解炉内分别依靠“旋风效应”“
3、、喷腾效应” 、“悬浮效应”及“流态化效应”或几种流型的叠加(旋流-喷腾)高度分散于气流之中,从而增加物料与气流间的接触面积,延长物料在分解炉内的停留时间。 旋流-喷腾叠加流场类, 如SF型、N-SF型、KSV型 旁置预燃室类, 如RSP型、GG型 流化床-悬浮层叠加流场类, 如MFC型、N-MFC型 喷腾或复合喷腾流场为主, 如SLC型、DD型 悬浮层流场为主管道炉类, 如Prepol-AT型、Pyroclon-R型(3)按全窑系统气体流动方式分类)按全窑系统气体流动方式分类1 燃烧空气从窑内通过与窑气一起入炉2 燃烧空气由专设风管引至窑尾或炉内与窑气混合3 燃烧空气经专设风管入炉,窑气不入
4、炉三类流程的比较三类流程的比较1.分解炉燃烧用空气从窑内通过 优点 (1)不需专设风管及其相应的收尘设施,可节省投资;流程较简单,散热较专设风管少,进炉气流温度较高。 (2)可从各种形式的冷却机取得高温气体。 缺点 (1)入炉燃烧用空气与窑气相混,氧气浓度降低,影响燃料燃烧及炉的发热能力; (2)影响窑的操作,使窑燃烧带气流速度增加,燃烧温度降低; (3)使窑后循环粉尘增大。2.窑气入分解炉的优缺点 优点 (1)当入炉窑气的温度高于950时,可给物科升温及分解提供部分热量; (2)窑气温度较入炉空气为高,当入炉空气温度有波动时,能起到缓和气温波动的作用,并能提高气流对物料的浮送能力。 缺点 (
5、1)增大了通过分解炉气体的流量; (2)影响分解炉中碳酸盐的分解速率; (3)影响分解炉内燃料的燃烧速度及发热能力; (4)限制了气流含尘浓度的提高。(4)按分解炉与窑、预热器及主排风机匹配方式分类 a和b称为同线型;c1称为半同线型; c2称为异线型;c3为旁路放风型。按炉内气流的运动型式分类按制造厂命名分类按全系统工艺流程分类常用配套预热器旋风式SF型(日本石川岛公司)第二类型洪堡型普列洛夫型(Prerov捷克机械厂)第二类型普列洛夫型FCB型(法国FCB公司)第一、二类型多波尔型ZAB型(德国德骚水泥机械厂)第一类型喷腾式FLS型(丹麦史密斯公司)第一、二类型、第三类型方式(b)FLS型
6、米亚格型(联邦德国比勒-米亚格公司)第一、二类型米亚格型盖波尔型(联邦德国伯力鸠斯公司)第一类型米亚格型旋风-喷腾式N-SF型(日本石川岛公司)第二类型盖波尔型C-SF型(日本石川岛公司)第二类型洪堡型RSP型(日本小野田公司)第二类型维达格型KSV型(日本川琦公司)第二类型多波尔型N-KSV型(日本川崎公司)第二类型多波尔型或KS-5型DD型(日本神户制铁公司)第二类型洪堡型GG型(日本三菱公司)第二类型UNSP型(或称UNP)(日本宇部公司)第二类型洪堡型Pre-AXIAL型(德国巴比考克公司)第二类型SOS型(日本住友公司)第三类型方式(b)洪堡型悬浮式普列波尔型(伯力鸠斯公司)第一、二
7、类型多波尔型派朗克隆型(洪堡维达格公司)第一、二类型洪堡型沸腾式MFC型(日本三菱公司)第三类型方式(a)多波尔型N-MFC型(日本三菱公司)第三类型方式(b)M-SP型或MK-5型(1) SF分解炉 窑气与三次风混合入炉9.3 几种典型分解炉的结构特征简介几种典型分解炉的结构特征简介(2)N-SF分解炉。 1)将燃料喷入点由原来喷入反应室锥体下部改为喷入涡流室顶部,燃料燃烧条件改善,延长了在炉内的停留时间,提高了燃烧效率; 2)改变窑气与三次风混合入炉的流程,三次风仍以切线方向进入涡流室,窑气则单独通过上升管道向上流动,使三次风与窑气在涡旋室形成叠加湍流运动,强化了料粉的分散混合;(3) C
8、-SF分解炉 将NSF炉侧面出口改为顶部涡室出口。 涡室下设置缩口,产生喷腾效果,克服气流偏流和短路。 增设连接管道,使生料停留时间达到15s以上,入窑生料分解率提高到90以上。9.3.2 DD系列分解炉系列分解炉DD炉可分炉可分4个区个区1.还原区(区) 包括喉口和下部锥体部分; 燃料在缺氧的窑废气中燃烧,产生高浓度还原气体 CO、H2和CH4,同窑废气中NOX发生反应 ,还原为无害的N2,故叫还原区。 2.燃料裂解和燃烧区(区) 三次风由2个对称风管喷入炉内(径向),三次风进口的顶部装有2个主要燃料喷嘴; 燃料喷入区富氧区立即在炉内湍流中裂解和燃烧。产生的热量迅速传给生料,气料进行高效热交
9、换,生料迅速分解。也称混合区。 3.主要燃烧区(区) 燃烧燃料、热量传递,生料吸热分解。炉温保持在850900,生料和燃料混合、分布均匀,没有明亮火焰的过热点,区内温度较低,且分布均匀。 炉的侧壁:形成生料幕,避免结皮 4.完全燃烧区(IV区) 燃料(10左右)继续燃烧,生料分解。 气体和生料通过区和IV区间缩口向上喷腾直接冲击到炉顶棚(反弹室),翻转向下后到出口,使气料搅拌和混合,达到完全燃烧和热交换。 在DD炉下部对称的三次风进风管,以及顶部2根出风管,都是向炉中心径向方向安装。这样做防止气流产生切向圆周的旋流运动,有利于炉内生料和气流产生良好喷腾运动 ,同时有利于降低阻力损失。 DD炉的
10、二次喷腾以及冲顶作用,改善了气料的搅拌和混合,增加了生料和燃料在炉内停留时间(达10s以上),使燃料在炉内达到完全燃烧,不会因未燃烧的燃料进入C5筒而引起结皮堵塞。出C5筒气体中CO含量保持在0.05以下。另外由于DD炉内气体与生料热交换好,使DD炉出口温度控制在870880,入窑生料分解率保持在90%以上。 DDII分解炉的结构 DDIIdx分解炉的结构 9.3.3 RSP系列分解炉系列分解炉 1.组成: 涡旋燃烧室SB、涡旋分解室SC、混合室MC三部分。 窑尾烟室与MC室之间设有缩口以平衡窑炉之间的压力SB室:室:点火、预燃点火、预燃SC室:室:燃烧、分解燃烧、分解MC室:室:炉窑气混合、
11、物料炉窑气混合、物料继续分解继续分解 2. RSP炉工作原理 1)涡旋燃烧室SB: 设有供点火用的辅助燃烧喷嘴;喷煤管从SB室上部伸入,插入深度与SC室顶部平齐;喷煤管内设置风翅,煤粉以30m/s速度从顶部向下呈旋涡状喷入,煤风旋转方向同SC室三次风气流旋转方向相反,有利于煤粉同三次风混合,否则会造成SC室旋流过大,影响燃料在SC室燃烧,造成大部分煤粉跑到MC室燃烧; 三次风以30m/s的速度从SC室上部对称地以切线方向吹入炉内。生料喂入该气流中,该处设有撒料棒,把生料打散后,同三次风一起吹入SC室内。 2)旋涡分解室SC 在SC室内,煤粉与新鲜三次风混合燃烧,燃烧速度快,是主燃烧区,使50以
12、上的煤粉完成燃烧。而随切向三次风进来的生料会在SC炉内壁形成一层料幕,对炉壁耐火砖起到保护作用。同时吸收火焰热量,大约有40生料分解。SC室内截面风速约为1012m/s。 3)混合室MC MC室主要功能是完成大部分生料分解任务。由SC室下来的热气流、生料粉及未燃烧完的燃料进入MC室后,与呈喷腾状态进入的高温窑烟气相混合,使燃料继续燃烧,生料进一步分解。由回转窑出来的高温窑气通过缩口产生喷腾运动,故缩口大小很关键,根据一些厂经验,喷腾速度要求达到38m/s,才有良好的喷腾效果。另外MC室截面要大,截面风速812m/s,风速低有利于延长生料和燃料在炉内滞留时间,使未燃尽的煤粉完全燃烧,生料继续分解
13、。 对RSP 分解炉的分析 特点: RSP分解炉的三次风先以切线方向进入涡流分解室,造成炉内的旋风运动,形成旋风效应,有利于炉内燃烧、传热和分解的进行。 RSP分解炉由于窑气不入燃烧分解室SC,室内氧气浓度高,燃烧速度较快,反应温度较高,所以分解室的容积热负荷较高,容积可相对缩小(约为其他炉的1/5)。炉内温度易于调节,由于发热能力大,所以气流含尘率较高,生产效率较高。 RSP型分解炉的混合室MC是炉气、物料、窑气相混的地方。高速上升的窑气至混合室造成喷腾效应,物料在高温气流中停留时间延长,有利于物料的继续分解。 RSP型分解炉内既有较强的旋风运动,又有喷腾运动,燃料与物料在炉内的运动路程及停
14、留时间均较长,有利于烧煤粉或低质燃料。 RSP分解炉设有涡流燃烧室SB,又称预燃室,SB容积小,燃烧气流中没有物料,不存在吸热的分解反应,所以SB内燃烧温度较高且稳定。SB的一般作用是在开窑时给SC点火用。 不足 结构复杂。炉体由SB、SC、MC三部分组成,炉的三次风由SB、SC多处入炉,所以炉及管道系统均较复杂。 全系统通风调节困难,流体阻力损失大。 SC室内料粉与煤粉均由上而下,与重力方向一致,当旋风效应控制不好时,料粉或煤粉在室内停留时间过短,造成物料的分解率降低,出口气温过高。9.3.4 FLS系列分解炉系列分解炉 1.FLS原型分解炉 由上部倒锥、下部正锥和中间圆筒组成; 喉部风速2
15、530m/s; 属喷腾型分解炉。 2.FLS改进型分解炉 为降低阻力和降低连接管高度,将炉顶锥体改为平顶及切线出口,但炉内会产生偏流、短路和特稀浓度区,因此部分炉型又改为原来的顶部倒锥体,同时将出口连接管改成鹅颈管,以延长物料的停留时间。 3. FLS预分解窑的分类及其特性 1)离线分解炉(SLC)窑 窑尾烟室及分解炉烟气各走一个旋风筒系列,两个系列亦拥有单独的排风机。调节简单,操作方便。并且分解炉内燃料燃烧使用净三次风,有利于稳定燃烧。 三次风以30m/s速度进入分解炉,从分解炉上一级旋风筒及窑列最下级旋风筒来的生料由炉的下锥体上部喂入炉内。 操作适应性强。由于空气中的挥发成分不进入分解炉,
16、故炉中不易粘结。同时窑系统可在满负荷产量25的情况下生产。 点火开窑快。 容易装设放风旁路,以适应碱、氯、硫等有害成分的排除。并且放风损失较小。 2)在线分解炉(ILC)窑 3)半离线型分解炉(SLC-S)窑 分解炉采用第一代上、下带锥体的炉型,炉气出口的“鹅颈”管道与最下级旋风筒连接。炉气在上升地道顶部与窑气会合,共用一列预热器和一台主风机。 大排风机需要抽吸窑气与炉气,两者需要平衡调节,相对来讲对生产操作要求较高。 生料中挥发性组分较高时,窑气中挥发性成分浓度较高、温度较高,上升烟道与在线分解炉比,容易发生结皮故障。 4)半离线两区段型分解炉(SLC-Sx)窑 5)离线下引分解炉(SLC-
17、D)窑 6)使用窑内过剩空气的同线分解炉(ILC-E)窑9.3.5 MFC系列分解炉系系列分解炉系 N-MFC炉的组成可以分为四个区域 : a.流化层区,炉底装有喷嘴,煤粒可通过溜子喂入或与生料一起喂入,可使最大粒径1mm的煤粒停留时间达1分钟以上,以充分燃烧;流化空气量为理论空气量的1015,流化空气压力为35KPa。由于流化层的作用,燃料很快在层中扩散,整个层面温度分布均匀。 b.供气区,从篦冷机抽来的700800的三次风,进入该区,区内风速为10m/s。 c.稀薄流化区,该区位于供气区之上,为倒锥型结构。在该区内气流速度由下面的10 m/s降到上面的4 m/s,煤中的粗粒在此区继续有上下
18、循环运动,形成稀薄的流化区。当煤粒进一步减小时,被气流带到上部直筒部分。 d.悬浮区,该区为圆筒形结构,气流速度约4m/s。小颗粒燃料和生料在此呈层流悬浮状态,燃料继续燃烧,生料进一步分解。 对流态化(沸腾)式分解炉的分析 燃料燃烧、传热及物料分解是处于密相流态化状态,与稀相悬浮态相比,流态化层中物料颗粒之间的距离要小得多,可获得很高的生产效率与热效率。 流态化分解炉是无焰燃烧,很容易使整个分解炉的温度保持均匀。煅烧情况稳定,分解炉内壁和排气管不会发生结皮。 具有一般分解炉窑单位容积产量高、消耗低、运转周期长、污染少等优点;其缺点是刚入炉的燃料与物料,与床层迅速混合,降低了燃烧过程及分解过程的
19、平均推动力;流化层的形成使流体阻力较大,需在炉用风管上连接高温高压风机,由于高温风机的限制,入炉空气温度不能过高。 3)将C3筒来料由炉顶部喂入改为大部分从上升烟道喂入,延长生料在炉内的停留时间,少部分从反应室锥体下部喂入,用以调节气流量的比例,从而不需在烟道上设置缩口,降低通风阻力,同时也减少了这一部位结皮堵塞的可能; 4)增大了分解炉的有效容积,更有利于煤粉充分燃烧和气固换热,提高了分解炉效率; 5)不足主要在于炉气侧向排出,且出口高度大,易产生偏流、短路和稀薄生料区。9.3.6 KSV系列分解炉系列分解炉 1. KSV分解炉 1)KSV分解炉由下部喷腾层和上部涡流室组成,喷腾层包括下部倒
20、锥、入口喉管及下部圆筒,而涡流室是喷腾层上部的圆筒部分。 2)三次风分两路入炉,一路由底部喉管喷入形成喷腾床,另一路从圆筒底部切向吹入,形成旋流,加强料气混合。 3)窑尾烟气由圆筒中间偏下部位切向吹入。 4)燃料由设在圆筒不同高度的喷嘴喷入。 5)预热后的生料分成两路入炉,约75%由圆筒部分与三次风切线进口处进入,使生料和气流充分混合,在上升气流作用下形成喷腾床,然后进入涡室,通过炉顶的生料由烟道缩口排出最下级旋风筒。约25%上部喂入,可降低窑废气温度,防止烟道结皮堵塞。 6)炉内的燃料燃烧及生料加热分解在喷腾床的喷腾效应及涡流室的旋风效应的综合作用下完成,入窑生料分解率可达85%90% 。
展开阅读全文