二维傅里叶变换.课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二维傅里叶变换.课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二维 傅里叶变换 课件
- 资源描述:
-
1、1要保证函数存在二维傅里叶变换对,函数就应该满足要保证函数存在二维傅里叶变换对,函数就应该满足狄里赫利条狄里赫利条件件和和绝对可积条件绝对可积条件,这个条件是从纯数学的角度来考虑的,是数,这个条件是从纯数学的角度来考虑的,是数学理论研究的范畴,信息光学来说,应该从应用的观点来考虑:学理论研究的范畴,信息光学来说,应该从应用的观点来考虑:在应用傅里叶变换的各个领域的大量事实表明,作为时间或空间在应用傅里叶变换的各个领域的大量事实表明,作为时间或空间函数而实际存在的物理量,总具备保证其傅里叶变换存在的基本函数而实际存在的物理量,总具备保证其傅里叶变换存在的基本条件。从应用的角度看,可以认为,傅里叶
2、变换实际上总是存在条件。从应用的角度看,可以认为,傅里叶变换实际上总是存在的。的。在应用问题中,也会遇到一些理想化的函数,如常数函数、阶跃在应用问题中,也会遇到一些理想化的函数,如常数函数、阶跃函数等光学领域中常用的函数,但是他们不满足保证其傅里叶变函数等光学领域中常用的函数,但是他们不满足保证其傅里叶变换存在的充分条件;同时他们在物理上也不能够严格实现,对这换存在的充分条件;同时他们在物理上也不能够严格实现,对这类数学难以讨论其经典意义下的傅里叶变换。但是可以借助函数类数学难以讨论其经典意义下的傅里叶变换。但是可以借助函数序列极限概念得到这类函数的广义傅里叶变换。序列极限概念得到这类函数的广
3、义傅里叶变换。物理上所用到的函数总存在物理上所用到的函数总存在FTFT2如果一个二维函数可以分离,那么他的傅立叶变换可以表示成两个一维傅立叶变换的乘积:如果那么( , )( ) ( )g x yj x h y ( , ) ( ) ( ) ( ) ( )F g x yF j x h yF j xF h x3空域频域( , )( , )cossinx yrxryr( , )( , )cossinu vuv 具有圆对称的函具有圆对称的函数在极坐标下描数在极坐标下描述起来更加方便述起来更加方便r4( , )( , )exp2 ()d dF u vf x yjuxvyx y cos ,sinxryrco
4、s ,sinuv20 0(cos ,sin )( cos , sin )exp2 (coscossinsidnd)rFf rrjrrr 20 0(cos ,sin )( cos , sin )exp2cos() d dFf rrjrr r 20 0( , )( , )exp2cos()d dFrf rjrr ( , )(cos ,sin )FF ( , )( cos , sin )f rf rr5( , )( , )exp 2 ()d df x yF u vjuxvyu v cos ,sinxryrcos ,sinuv20 0( cos , sin )(cos ,sin )exp 2 (cos
5、cossinsind)df rrFjrr 20 0( cos , sin )(cos ,sin )exp 2cos() d df rrFjr 20 0( , )( , )exp 2cos()d df rFjr ( , )(cos ,sin )FF ( , )( cos , sin )f rf rr620 020 0( , )( , )exp2cos()d d( , )( , )exp 2cos()d dGrf rjrrf rGjr 极坐标系下的Fourier transformation本节给出一些重要的FT性质,间或加以推导利用这些性质,只要知道不多的几个函数的FT,就很容易求出其他函数的F
展开阅读全文