空间解析几何基础知识课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间解析几何基础知识课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 解析几何 基础知识 课件
- 资源描述:
-
1、x横轴横轴y纵轴纵轴z竖轴竖轴 定点定点o空间直角坐标系空间直角坐标系 三个坐标轴的正方向三个坐标轴的正方向符合符合右手系右手系.即以右手握住即以右手握住z轴,轴,当右手的四个手指当右手的四个手指从正向从正向x轴以轴以2 角角度转向正向度转向正向y轴轴时,大拇指的指向时,大拇指的指向就是就是z轴的正向轴的正向.一、空间点的直角坐标一、空间点的直角坐标xyozxoy面面yoz面面zox面面空间直角坐标系共有空间直角坐标系共有八个卦限八个卦限 .21221221221zzyyxxMM 空间两点间距离公式空间两点间距离公式设设),(1111zyxM、),(2222zyxM为为空空间间两两点点二、空间
2、两点间的距离二、空间两点间的距离向量:向量:既有大小又有方向的量既有大小又有方向的量. .向量表示:向量表示:以以1M为起点,为起点,2M为终点的有向线段为终点的有向线段.1M2M a21MM模长为模长为1 1的向量的向量. .21MM00a零向量:零向量:模长为模长为0 0的向量的向量. .0|a21MM| |向量的模:向量的模:向量的大小向量的大小. .单位向量:单位向量:一、向量的概念一、向量的概念或或或或或或自由向量:自由向量:不考虑起点位置的向量不考虑起点位置的向量. .相等向量:相等向量:大小相等且方向相同的向量大小相等且方向相同的向量. .负向量:负向量:大小相等但方向相反的向量
3、大小相等但方向相反的向量. .a 向径:向径:aba a空间直角坐标系中任一点空间直角坐标系中任一点 与原点与原点构成的向量构成的向量. . OMM1 加法:加法:cba abc(平行四边形法则)(平行四边形法则)特殊地:若特殊地:若ababc|bac 分为同向和反向分为同向和反向bac|bac (平行四边形法则有时也称为三角形法则)(平行四边形法则有时也称为三角形法则)二、向量的加减法二、向量的加减法向量的加法符合下列运算规律:向量的加法符合下列运算规律:(1 1)交换律:)交换律:.abba (2 2)结合律:)结合律:cbacba )().(cba (3). 0)( aa2 减法减法)(
4、 baba abb b cbabac )(ba ba ab设设 是是一一个个数数,向向量量a与与 的的乘乘积积a 规规定定为为, 0)1( a 与与a同向,同向,|aa , 0)2( 0 a , 0)3( a 与与a反向,反向,|aa aa2a21 三、向量与数的乘法三、向量与数的乘法数与向量的乘积符合下列运算规律:数与向量的乘积符合下列运算规律:(1 1)结合律:)结合律:)()(aa a)( (2 2)分配律:)分配律:aaa )(baba )(.0ababa ,使,使一的实数一的实数分必要条件是:存在唯分必要条件是:存在唯的充的充平行于平行于,那末向量,那末向量设向量设向量定理定理两个向
5、量的平行关系两个向量的平行关系同方向的单位向量,同方向的单位向量,表示与非零向量表示与非零向量设设aa0按照向量与数的乘积的规定,按照向量与数的乘积的规定,0|aaa .|0aaa 上式表明:一个非零向量除以它的模的结果是上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量一个与原向量同方向的单位向量.一、空间两向量的夹角的概念:一、空间两向量的夹角的概念:, 0 a, 0 bab 向向量量a与与向向量量b的的夹夹角角),(ba ),(ab 类似地,可定义类似地,可定义向量与一轴向量与一轴或或空间两轴空间两轴的夹角的夹角.特殊地,当两个向量中有一个零向量时,规定特殊地,当两个向
6、量中有一个零向量时,规定它们的夹角可在它们的夹角可在0与与 之间任意取值之间任意取值. 0() 空间一点在轴上的投影空间一点在轴上的投影u AA 过过点点A作作轴轴u的的垂垂直直平平面面,交交点点A 即即为为点点A在在轴轴u上上的的投投影影.空间一向量在轴上的投影空间一向量在轴上的投影uAA BB 已知向量的起点已知向量的起点A和终点和终点B在在轴轴u上的投影分别为上的投影分别为BA ,那那么轴么轴u上的有向线段上的有向线段BA 的的值,称为向量在轴值,称为向量在轴u上的投影上的投影.ABjuPr.BA 向量向量AB在轴在轴u上的投影记为上的投影记为关于向量的关于向量的投影定理(投影定理(1
7、1) 向向量量AB在在轴轴u上上的的投投影影等等于于向向量量的的模模乘乘以以轴轴与与向向量量的的夹夹角角的的余余弦弦:ABjuPr cos| AB 证证uABA B B ABjuPrABju Pr cos| AB u 定理定理1 1的说明:的说明:投影为正;投影为正;投影为负;投影为负;投影为零;投影为零;uabc(4) 相等向量在同一轴上投影相等;相等向量在同一轴上投影相等; 0)1(,2 2)2(, )3(,2 关于向量的关于向量的投影定理(投影定理(2 2)两两个个向向量量的的和和在在轴轴上上的的投投影影等等于于两两个个向向量量在在该该轴轴上上的的投投影影之之和和. .PrPr)(Pr2
8、121a ja jaaj AA BB CC (可推广到有限多个)(可推广到有限多个)u1a2a设设a是是以以),(1111zyxM为为起起点点、),(2222zyxM为为终终点点的的向向量量,过过21, MM各各作作垂垂直直于于三三个个坐坐标标轴轴的的平平面面 ,这这六六个个平平面面围围成成一一个个以以线线段段21MM为为对对角角线线的的长长方方体体.二、向量在坐标轴上的分向量与向量二、向量在坐标轴上的分向量与向量的坐标的坐标xyzo 1MPNQR 2M以以kji,分分别别表表示示沿沿zyx,轴轴正正向向的的单单位位向向量量.ijkkajaiaazyx 向量在向量在 轴上的投影轴上的投影x 向
9、量在向量在 轴上的投影轴上的投影y 向量在向量在 轴上的投影轴上的投影z12xxax 12yyay 12zzaz kzzjyyixxMM)()()(12121221 kzzjyyixxMM)()()(12121221 按基本单位向量的按基本单位向量的坐标分解式坐标分解式:在三个坐标轴上的在三个坐标轴上的分向量分向量:,kajaiazyx向量的向量的坐标坐标:,zyxaaa向量的向量的坐标表达式坐标表达式:,zyxaaaa ,12121221zzyyxxMM 特殊地:特殊地:,zyxOM 向量的加减法、向量与数的乘法运算的坐标表达式向量的加减法、向量与数的乘法运算的坐标表达式,zyxaaaa ,
10、zyxbbbb ,zzyyxxbabababa ,zzyyxxbabababa ,zyxaaaa ;)()()(kbajbaibazzyyxx ;)()()(kbajbaibazzyyxx .)()()(kajaiazyx 非零向量非零向量 的的方向角方向角:a非零向量与三条坐标轴的正向的夹角称为方向角非零向量与三条坐标轴的正向的夹角称为方向角. . 、 、 ,0 ,0 .0 xyzo 1M 2M 三、向量的模与方向余弦的坐标表示式三、向量的模与方向余弦的坐标表示式xyzo 1M 2M 由图分析可知由图分析可知 cos|aax cos|aay cos|aaz 向量的方向余弦向量的方向余弦方向余
11、弦通常用来表示向量的方向方向余弦通常用来表示向量的方向. .222|zyxaaaa PQR向量模长的坐标表示式向量模长的坐标表示式21212121RMQMPMMM 0222 zyxaaa当当 时,时,,cos222zyxxaaaa ,cos222zyxyaaaa .cos222zyxzaaaa 向量方向余弦的坐标表示式向量方向余弦的坐标表示式1coscoscos222 方向余弦的特征方向余弦的特征0a|aa .cos,cos,cos 特殊地:单位向量的方向余弦为特殊地:单位向量的方向余弦为0)2( ba.ba .|)1(2aaa 关于数量积的说明:关于数量积的说明:一、两向量的数量积一、两向量
12、的数量积向量向量a与与b的的数量积数量积为为ba cos|baba (其中其中 为为a与与b的夹角的夹角)定义定义数量积也称为数量积也称为“点积点积”、“内积内积”.数量积符合下列运算规律:数量积符合下列运算规律:(1 1)交换律)交换律:;abba (2 2)分配律)分配律:;)(cbcacba (3 3)若)若 为数为数: ),()()(bababa 若若 、 为数为数: ).()()(baba cos|baba ,|cosbaba 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式 ba0 zzyyxxbababa由此可知两向量垂直的充要条件为由此可知两向量垂直的充要条件为,kajai
13、aazyx 数量积的坐标表达式数量积的坐标表达式kbjbibbzyx zzyyxxbabababa 向向量量a与与b的的向向量量积积为为 bac sin|bac (其中其中 为为a与与b的夹角的夹角)定义定义c的方向既垂直于的方向既垂直于a,又垂直于,又垂直于b,指向符合,指向符合右手系右手系. .关于向量积的说明:关于向量积的说明:. 0)1( aa)0sin0( ba)2(/. 0 ba)0, 0( ba向量积也称为向量积也称为“叉积叉积”、“外积外积”.二、两向量的向量积二、两向量的向量积向量积符合下列运算规律:向量积符合下列运算规律:(1).abba (2)分配律:分配律:.)(cbc
14、acba (3)若若 为数:为数: ).()()(bababa 向量积还可用三阶行列式表示向量积还可用三阶行列式表示zyxzyxbbbaaakjiba ba/zzyyxxbababa 由上式可推出由上式可推出,kajaiaazyx kbjbibbzyx zzyxbaaa 000, 0 yxaa补充补充|ba 表表示示以以a和和b为为邻邻边边的的平平行行四四边边形形的的面面积积.xb、yb、zb不不能能同同时时为为零零,但但允允许许两两个个为为零零,例如,例如,abbac 定义定义 设设已已知知三三个个向向量量a、b、c,数数量量cba )(称称为为这这三三个个向向量量的的混混合合积积,记记为为
15、cba. .cbacba )(zyxzyxzyxcccbbbaaa ,kajaiaazyx ,kbjbibbzyx 设设,kcjcicczyx 混合积的坐标表达式混合积的坐标表达式三、向量的混合积三、向量的混合积关于混合积的说明:关于混合积的说明:)2(cbacba )(acb )(.)(bac (3)三向量)三向量a、b、c共面共面. 0 cba(1)向量的混合积是一个数量向量的混合积是一个数量.一、曲面方程的概念一、曲面方程的概念曲面方程的定义:曲面方程的定义:如果曲面如果曲面S与三元方程与三元方程0),( zyxF有下述关系:有下述关系:(1 1) 曲面曲面S上任一点的坐标都满足方程;上
16、任一点的坐标都满足方程;(2 2)不在曲面)不在曲面S上的点的坐标都不满足方程;上的点的坐标都不满足方程;那那么么,方方程程0),( zyxF就就叫叫做做曲曲面面S的的方方程程,而而曲曲面面S就就叫叫做做方方程程的的图图形形 2202020Rzzyyxx 例例 1 1 建建立立球球心心在在点点),(0000zyxM、半半径径为为R的的球球面面方方程程.以上几例表明研究空间曲面有以上几例表明研究空间曲面有两个基本问题两个基本问题:(2 2)已知坐标间的关系式,研究曲面形状)已知坐标间的关系式,研究曲面形状(讨论旋转曲面)(讨论旋转曲面)(讨论柱面、二次曲面)(讨论柱面、二次曲面)(1 1)已知曲
17、面作为点的轨迹时,求曲面方程)已知曲面作为点的轨迹时,求曲面方程二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴播放播放二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋
18、转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一
19、条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴
20、二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .这条定直线叫旋转这条定直线叫旋转曲面的曲面的轴轴二、旋转曲面二、旋转曲面定义定义 以一条平面以一条平面曲线绕其平面上的曲线绕其平面上的一条直线旋转一周一条直线旋转一周所成的曲面称为旋所成的曲面称为旋转曲面转曲面. .
展开阅读全文