书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型全国通用版2019版高考数学一轮复习第六章不等式推理与证明课时分层作业四十6.6数学归纳法(理科).doc

  • 上传人(卖家):flying
  • 文档编号:30040
  • 上传时间:2018-08-11
  • 格式:DOC
  • 页数:6
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《全国通用版2019版高考数学一轮复习第六章不等式推理与证明课时分层作业四十6.6数学归纳法(理科).doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国 通用版 2019 高考 数学 一轮 复习 第六 不等式 推理 证明 课时 分层 作业 四十 6.6 归纳法 理科 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、=【 ;精品教育资源文库 】 = 课时分层作业 四十 数学归纳法 一、选择题 (每小题 5分 ,共 35分 ) 1.用数学归纳法证明“ 2nn2+1 对于 n n0的正整数 n都成立”时 ,第一步证明中的起始值 n0应取 ( ) A.2 B.3 C.5 D.6 【解析】 选 C.当 n=1时 ,21=2=12+1, 当 n=2时 ,22=452+1=26, 当 n=6时 ,26=6462+1=37,故起始值 n0应取 5. 2.(2018淄博模拟 )设 f(x)是定义在正整数集上的函数 ,且 f(x)满足 :当 f(k) k+1成立时 ,总能推出 f(k+1) k+2成立 ,那么下列命题总成立

    2、的是 ( ) A.若 f(1)2,f(8) ,f(16)3,f(32) ,观察上述结果 ,可推测出一般结论 ( ) A.f(2n) B.f(n2) C.f(2n) D.以上都不对 【解析】 选 C.f(2)=f(21)= = ,f(4)=f(22) , f(8)=f(23) ,f(16)=f(24) , =【 ;精品教育资源文库 】 = f(32)=f(25) ,由此可推知 f(2n) . 6.用数学归纳法证明 1+2+3+? +2n=2n-1+22n-1(n N*)时 ,假设 n=k时命题成立 ,则当 n=k+1时 ,左端增加的项数是 ( ) A.1 项 B.k-1项 C.k 项 D.2k项

    3、 【解析】 选 D. 运用数学归纳法证明 1+2+3+? +2n=2n-1+22n-1(n N*) 当 n=k时 ,则有 1+2+3+? +2k=2k-1+22k-1(k N*) 左边表示的为 2k项的和 .当 n=k+1 时 ,则 左边 =1+2+3+? +2k+(2k+1)+? +2k+1,表示的为 2k+1项的和 ,因此 ,增加了 2k+1-2k=2k项 . 7.(2018商丘模拟 )已知 1+23+33 2+43 3+? +n3 n-1=3n(na-b)+c对一切 n N*都成立 ,则 a,b,c的值为( ) A.a= ,b=c= B.a=b=c= C.a=0,b=c= D.不存在这样

    4、的 a,b,c 【解题指南】 根据数学归 纳法的要求 ,只需代入前三个数即可 . 【解析】 选 A.因为等式对一切 n N*均成立 ,所以 n=1,2,3时等式成立 , 即 整理得 解得 a= ,b=c= . 二、填空题 (每小题 5分 ,共 15分 ) 8.(2018洛阳模拟 )用数学归纳法证明 1+ + +? + 1)时 ,第一步应验证的不等式是_. 解析】 由 n N*,n1知 ,n取第一个值 n0=2,当 n=2时 ,不等式为 1+ + 的过程中 ,由 n=k推 导 n=k+1时 ,不等式的左边增加的式子是 _. 导学号 12560630 【解析】 不等式的左边增加的式子是 + - =

    5、 ,故填. 答案 : . 1.(5分 )已知 n为正偶数 ,用数学归纳法证明 1- + - +? - =2( + +? + )时 ,若已假设n=k(k 2且 k为偶数 )时命题为真 ,则还需要用归纳假设再证 ( ) A.n=k+1 时等式成立 B.n=k+2 时等式成立 C.n=2k+2时等式成立 D.n=2(k+2)时等式成立 【解析】 选 B. k为偶数 ,则 k+2为偶数 . 2.(5分 )用数学归纳法证明“ 1+ + +? + 1,n N*),求证 : 1+ (n 2,n N*). 【证明】 (1)当 n=2时 , =S4=1+ + + = 1+ ,即 n=2时命题成立 ; (2)假设

    6、当 n=k(k 2,k N*)时命题成立 ,即 =1+ + +? + 1+ , 则当 n=k+1时 , =1+ + +? + + +? + 1+ + + +?+ 1+ + =1+ + =1+ , 故当 n=k+1时 ,命题成立 . 由 (1)和 (2)可知 ,对 n 2,n N*.不等式 1+ 都成立 . 5.(13分 )在数列 an中 ,a1=2,an+1=a n+ n+1+(2-)2 n(n N*,0). (1)求 a2,a3,a4. (2)猜想 an的通项公式 ,并加以证明 . 【解析】 (1)a2=2 + 2+2(2- )= 2+22, =【 ;精品教育资源文库 】 = a3= ( 2

    7、+22)+ 3+(2- )22=2 3+23, a4= (2 3+23)+ 4+(2- )23=3 4+24. (2)由 (1)可猜想数列通项公式为 : an=(n-1) n+2n. 下面用数学归纳法证明 : 当 n=1,2,3,4时 ,等式显然成立 , 假设当 n=k(k 4,k N*)时等式成立 , 即 ak=(k-1) k+2k, 那么当 n=k+1时 , ak+1= ak+ k+1+(2- )2k = (k-1) k+ 2k+ k+1+2k+1- 2k =(k-1) k+1+ k+1+2k+1 =(k+1)-1 k+1+2k+1, 所以当 n=k+1时 ,ak+1=(k+1)-1 k+1+2k+1,猜想成立 , 由知数列的通项公式为 an=(n-1) n+2n(n N*, 0).

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:全国通用版2019版高考数学一轮复习第六章不等式推理与证明课时分层作业四十6.6数学归纳法(理科).doc
    链接地址:https://www.163wenku.com/p-30040.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库