全国通用版2019版高考数学一轮复习第十二单元空间向量高考达标检测三十三空间向量2综合--翻折探索(理科).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全国通用版2019版高考数学一轮复习第十二单元空间向量高考达标检测三十三空间向量2综合--翻折探索(理科).doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用版 2019 高考 数学 一轮 复习 第十二 单元 空间 向量 达标 检测 三十三 综合 _ 探索 理科 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、=【 ;精品教育资源文库 】 = 高考达标检测(三十三) 空间向量 2 综合 翻折、探索 1如图 1,在 ABC 中, C 90 , AC BC 3a,点 P 在 AB 上, PE BC 交 AC 于点 E,PF AC 交 BC 于点 F.沿 PE 将 APE 翻折成 A PE,使得平面 A PE 平面 ABC;沿 PF 将 BPF 翻折成 B PF,使得平面 B PF 平面 ABC,如图 2. (1)求证: B C 平面 A PE; (2)若 AP 2PB,求二面角 A PCB 的正切值 解: (1)证明:因为 FC PE, FC?平面 A PE, PE?平面 A PE, 所以 FC 平面
2、A PE. 因为平面 A PE 平面 ABC,且平面 A PE 平面 ABC PE, A E PE, 所以 A E 平面 ABC. 同理 B F 平面 ABC, 所以 B F A E,从而 B F 平面 A PE. 又 FC B F F, 所以平面 B CF 平面 A PE. 因为 B C? 平面 B CF,所以 B C 平面 A PE. (2)易知 EC, EP, EA 两两垂直 , 可建立如图所示的空间直角坐标系 Exyz. 则 C(a,0,0), P(0,2a,0), A(0,0,2 a), B( a,2a, a) 所以 A C (a,0, 2a), A P (0,2a, 2a), B
3、C (0, 2a, a), B P ( a,0, a) 设平面 A CP 的一个法向量为 m (x, y,1), =【 ;精品教育资源文库 】 = 则? m A C 0,m A P 0,即? ax 2a 0,2ay 2a 0, 解得 ? x 2,y 1, 所以平面 A CP 的一个法向量为 m (2,1,1) 设平面 B CP 的一个法向量为 n (x , y , 1), 则? n B C 0,n B P 0,即? 2ay a 0, ax a 0, 解得 ? x 1,y 12, 所以平面 B CP 的一个法向量为 n ? ? 1, 12, 1 . 设二面角 A PCB 的大小为 , 易知 为锐
4、角 , 则 cos |m n|m| n| ? ? 326 32 66 , 从而可得 tan 5, 即二面角 A PCB 的正切值为 5. 2.如图,在梯形 ABCD中, AB CD, AD DC CB 1, ABC 60. EA FC,且 FC 平面 ABCD, FC 2, AE 1,点 M 为 EF 上任意一点 (1)求证: AM BC; (2)点 M 在线段 EF 上运动 (包括两端点 ),试确定 M 的位置,使平面 MAB 与平面 FBC 所成的锐二面角为 60. 解: (1)证明: AB CD, AD DC CB 1, ABC 60 , AB 2,连接 AC, 在 ABC 中, AC2
5、 AB2 BC2 2AB BCcos 60 22 12 221 cos 60 3, AB2 AC2 BC2, BC AC. FC 平面 ABCD, FC BC. 又 AC FC C, BC 平面 AEFC, AM?平面 AEFC, BC AM. (2)以 C 为坐标原点,分别以直线 CA, CB, CF 为 x 轴、 y 轴、 z轴建立如图所示的空间直角坐标系 C xyz,则 A( 3, 0,0),B(0,1,0), C(0,0,0), F(0,0,2), E( 3, 0,1), AB ( 3, 1,0), 设 M(x, y, z), FM FE (0 1) , 则 (x, y, z 2) (
6、 3, 0, 1), =【 ;精品教育资源文库 】 = ? x 3 ,y 0,z 2 ,故 M( 3 , 0,2 ), AM ( 3 3, 0,2 ) 设平面 ABM 的法向量 m (x1, y1, z1), 则? m AM 0,m AB 0,即 ? 3 x1 z1 0, 3x1 y1 0,令 x1 1,可得 y1 3, z1 3 2 , m ? ?1, 3, 3 2 . 易知平面 FBC 的一个法向量为 n (1,0,0), cos 60 |m n|m|n| 11 3 ? ?3 2 2 12, 1, 点 M 与点 E 重合时,平面 MAB 与平面 FBC 所成的锐二 面角为 60. 3如图,
7、已知在长方形 ABCD 中, AB 2, A1, B1分别是边 AD, BC 上的点,且 AA1 BB1 1, A1E 垂直 B1D 于 E, F 为 AB 的中点把长方形 ABCD 沿直线 A1B1折起,使得平面 AA1B1B 平面 A1B1CD,且直线 B1D 与平面 AA1B1B 所成的角为 30. (1)求异面直线 A1E, B1F 所成角的余弦值; (2)求二面角 FB1DA1的余弦值 解:由已知条件可得 A1A, A1B1, A1D 两两垂直,可建立如图所示的空间直角坐标系 A1xyz,由已知 AB 2, AA1 BB1 1,可得 A1(0,0,0), B1(2,0,0), F(1
展开阅读全文
链接地址:https://www.163wenku.com/p-30002.html