数据挖掘模型评价课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数据挖掘模型评价课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 模型 评价 课件
- 资源描述:
-
1、2022-6-1612022-6-162评估分类法准确率的技术有保持(holdout)和k-折交叉确认(k-fold cross-validation)方法。另外,还有两种提供分类法准确率的策略:装袋(bagging)和推进(boosting)。1、保持和k-折交叉在保持方法中,给定数据随机划分成两个独立的集合:训练集和测试集。通常,三分之二的数据分配到训练集,其余三分之一分配到训练集。2022-6-163“保持”这种评估方法是保守的,因为只有一部分初始数据用于导出的分类法。随机子选样是“保持”方法的一种变形,它将“保持”方法重复k次。总体准确率估计取每次迭代准确率的平均值。在k折交叉确认(k
2、fold crossvalidation)中,初试数据被划分成k个互不相交的子集或“折”,每个折的大小大致相等。训练和测试k次。在第i次迭代,第i折用作测试集,其余的子集都用于训练分类法。准确率估计是k次迭代正确分类数除以初始数据中的样本总数。2022-6-1642022-6-165*1,2,.,ittttsSt tTSSSSSCXCCX给定样本 个样本的集合 ,装袋过程如下。对于迭代(),训练集 采用放回选样,由原始样本集选取。由于使用放回选样, 的某些样本可能不在 中,而其他的可能出现多次。由每个训练集 学习,得到一个分类法 。为对一个未知的样本 分类,每个分类法返回他的类预测,算作一票。
3、装 袋的分类法统计得票,并将得票最高的类赋予 。通过取得票的平均值,或者多数,装 袋也可以是连续值的预测。装袋2022-6-166tC 在推进中,每个训练样本赋予一个权。学习得到一系列分类法。学习得到分类法后,对分类错误的样本更新权重,使得下一次迭代更关注这些样本。推进即使用相同的分类器,各个分类器不是独立的;使用同一个算法对样本迭代训练,后建立的分类器关注于先前建立的分类器不能更好处理的部分数据;最终的输出为各个分类器的加权投票。假定你已经训练了一个分类法,将医疗数据分类为“cancer”或“non_cancer”。90%的准确率使得该分类法看上去相当准确,但是如果实际只有34%的训练样本是
4、“cancer”会怎么样?显然,90%的准确率是不能接受的该分类法只能正确的标记“non_cancer”(称作负样本)样本。但我们希望评估该分类能够识别“cancer”(称作正样本)的情况。2022-6-167为此,除用准确率评价分类模型外,还需要使用灵敏性(sensitivity)和特效性(specificity)度量。还可以使用精度(precision)来度量,即评估标记为“cancer”,实际是“cancer”的样本百分比。2022-6-168其中,t_pos是真正样本(被正确地按此分类的“cancer”样本)数,pos是正(“cancer”)样本数,t_neg是真负样本(被正确地按此分
5、类的“non_cancer”样本)数,neg是负( “non_cancer”)样本数,而f_pos假正样本(被错误地标记为“cancer”的“non_cancer”样本)数2022-6-169_( _)tpospercisiontposfpos_tpossensitivitypos灵敏性特效性精度_tnegspecificityneg()()posnegaccuracysensitivityspecificityposnegposneg2022-6-1610预测值预测值1(实际(实际“cancer”)0(实际(实际no_cancer)1(预测“cancer”)000(预测“no_cancer”
6、)1090_0( _)90%()()tpospercisiontposfposposnegaccuracysensitivityspecificityposnegposneg_0100%tpostnegsensitivityspecificityposneg传统评估分类预测模型时,通常使用的是“准确度”。它的功能是评估模型分类实物是否正确。准确度越高模型就越好。但事实上,这样评估出来的模型并不是最好的。2022-6-1611例:某家银行发行现金卡,风险控管部门主管决定建立DM模型,利用申请人申请当时的所填的资料,建立违约预测模型,来作为核发现金卡以及给予额度的标准。该银行邀请两家DM公司来设计
7、模型,评比的标准是根据模型的“准确度”。根据此标准,A公司所建模型的准确度92%,B公司的准确度是68%。银行和A公司签约。2022-6-1612利用A公司的模型后,结果发现里面只有一条规则,那就是“所有的人都不会违约”。为什么?A:所有的人都不会违约,因此它错误的只有8%的违约分类错误(违约误判为不违约),因此准确率是92%。B:在根据评分由高至低筛选出来前40%的名单中,可以将所有的违约户都找出来。即有32%的非违约户被误判为违约户,因此准确率只有68%。哪一家的模型更好呢?由上可以发现,不能使用准确率来评判模型的优劣。2022-6-1613原因在于两类错误,忽略了“错误不等价错误不等价”
8、。如果把一个“会违约的人判断成不会违约”,这家银行损失2030万元的现金卡卡金,但是如果将一个“不会违约的人错判成违约”,只是划分了一些审查成本以及可能因为保守给予额度而造成的机会成本损失。因此两种误判所造成的效益影响是不等价的。2022-6-1614所谓小概率事件是发生概率小,而且一定所谓小概率事件是发生概率小,而且一定是能够为企业界带来高度获利或严重损失是能够为企业界带来高度获利或严重损失的事件。的事件。由于小概率事件发生概率很小,如果针对所有客户采取行动,就会形成浪费,因此,需要利用预测的技术将小概率事件找出来。那么,只针对预测的小概率事件采取行动就会避免浪费。DM的价值就在于能够利用历
9、史资料找出“小概率事件小概率事件”。2022-6-1615小概率事件:因此,评估数据挖掘模型的第一步就必须从错误状态的分类入手。这需要建立分类矩阵,通过分类矩阵来查看所有错误的分布。2022-6-1616H0 为真H0 为假真实情况所作判断接受H0拒绝H0正确正确弃真错误 取伪错误两类错误犯第一类错误是弃真错误;犯第二类错误是取伪错误 。2022-6-1617对于DM来说,通常第二类错误的损失或收益要比第一类高。因此,我们需要确定哪一个状况是我们所关心的小概率事件。把对这个事件的误判会造成极大损失的情况,作为第二类错误。例,把一个好账的人当作呆账是第一类错误,把一个呆账的人当作好账是第二类错误
10、。2022-6-1618预测值预测值1(实际(实际“会违约会违约”)0(实际(实际“不会违约不会违约”)1662801857212022-6-1619表中,预测为会违约且实际也会违约的有66人,预测不会违约且实际没有违约的有721人,这些是分类正确者。表中,预测为会违约且实际没有违约的有28人,预测不会违约且实际违约的有185人,这些是预测模型判断错误的部分。其中,后者还会造成比较其中,后者还会造成比较严重的损失,是值得关注的部分。严重的损失,是值得关注的部分。2022-6-1620主要看三个指标,即回应率、反查率以及间距缩减。Response rate=预测会违约且实际会违约/所有预测会违约
展开阅读全文