浙江省宁波市九校2018-2019学年高二上学期期末联考数学试题 Word版含解答.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《浙江省宁波市九校2018-2019学年高二上学期期末联考数学试题 Word版含解答.doc》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省宁波市九校2018-2019学年高二上学期期末联考数学试题 Word版含解答 浙江省 宁波市 2018 2019 学年 高二上 学期 期末 联考 数学试题 Word 解答 下载 _考试试卷_数学_高中
- 资源描述:
-
1、宁波市2018学年第一学期期末九校联考高二数学试题一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.椭圆的短轴长为( )A. 8 B. 10 C. 5 D. 4【答案】A【解析】【分析】利用椭圆的方程,直接求解即可【详解】解:椭圆,可知焦点在x轴上,b4,所以椭圆的短轴长为8故选:A【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查2.设复数满足,其中为虚数单位,则复数对应的点位于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由(1+i)2z2+i,得2iz2+
2、i,复数z对应的点的坐标为(,1),位于第四象限故选:D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题3.已知,是两条不同的直线,是两个不同的平面,下列说法正确的是( )A. 若,则B. 若,则C. 若,则D. 若平面内有不共线的三点到平面的距离相等,则【答案】A【解析】【分析】在A中,由线面垂直的性质定理得mn;在B中,与相交或平行;在C中,;在D中,与相交或平行【详解】解:由m,n是两条不同的直线,是两个不同的平面,知:在A中,若m,n,则由线面垂直的性质定理得mn,故A正确;在B中,若m,m,则与相交或平行,故B错误;在C中,若m,m,则,故C错误;在
3、D中,若平面内有不共线的三点到平面的距离相等,则与相交或平行,故D错误故选:A【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题4.有下列四个命题:“相似三角形周长相等”的否命题;“若,则”的逆命题;“若,则”的否命题;“若,则方程有实根”的逆否命题;其中真命题的个数是( )A. 0个 B. 1个 C. 2个 D. 3个【答案】C【解析】【分析】写出命题的逆命题可判断;写出逆命题,可判断;写出命题的否命题,可判断;由判别式法可判断原命题的真假,进而判断【详解】解:“相似三角形周长相等”的逆命题为“周长相等的三角形相似”不正确,根据逆否命
4、题同真同假,可得其否命题不正确;“若xy,则x|y|”的逆命题为“若x|y|,则xy”正确;“若x1,则x2+x20”的否命题为“若x1,则x2+x20”不正确;“若b0,则方程x22bx+b2+b0有实根”由4b24(b2+b)4b0,可得原命题正确,其逆否命题也正确故选:C【点睛】本题考查简易逻辑的知识,主要是四种命题的真假和相互关系,考查推理能力,属于基础题5.已知,则“且”是“抛物线的焦点在轴非负半轴上”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A【解析】【分析】求出抛物线的标准方程,结合抛物线的焦点坐标,建立不等式关系进行
5、判断即可【详解】解:抛物线mx2+ny0的标准方程为x2y4()y,对应的焦点坐标为(0,),若焦点在y轴非负半轴上,则0,即mn0,则m0且n0或n0且m0,则“m0且n0”是“抛物线mx2+ny0的焦点在y轴非负半轴上”的充分不必要条件,故选:A【点睛】本题主要考查充分条件和必要条件的判断,结合抛物线的标准方程以及抛物线的焦点坐标建立不等式关系是解决本题的关键6.下列命题正确的是( )A. 是向量,不共线的充要条件B. 在空间四边形中,C. 在棱长为1的正四面体中,D. 设,三点不共线,为平面外一点,若,则,四点共面【答案】B【解析】【分析】由向量共线和充分必要条件的定义可判断A;由向量的
6、加减和数量积的定义可判断B;由向量数量积的定义计算可判断C;由四点共面的条件可判断D【详解】解:由|,向量,可能共线,比如共线向量,的模分别是2,3,故A不正确;在空间四边形ABCD中,()()()0,故B正确在棱长为1的正四面体ABCD中,11cos120,故C错误;设A,B,C三点不共线,O为平面ABC外一点,若,由121,可得P,A,B,C四点不共面,故 D错误故选:B【点睛】本题考查向量共线和向量数量积的定义、以及四点共面的条件,考查运算能力和推理能力,属于基础题7.若椭圆与双曲线有公共的焦点,点是两条曲线的交点,椭圆的离心率为,双曲线的离心率为,且,则( )A. B. C. D. 【
7、答案】B【解析】【分析】设PF1s,PF2t,由椭圆的定义可得s+t2a1,由双曲线的定义可得st2a2,运用余弦定理和离心率公式,计算即可得e1的值【详解】解:不妨设P在第一象限,再设PF1s,PF2t,由椭圆的定义可得s+t2a1,由双曲线的定义可得st2a2,解得sa1+a2,ta1a2,由F1PF2,可得,由e1e21,即,得:,解得:(舍),或,即故选:B【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题8.已知为双曲线右支上一点,为其左顶点,为其右焦点,满足,则点到直线的距离为( )A. B. C. D. 【答案】D【解析】【分析】由题意
8、可得APF为等边三角形,求出P的坐标,利用双曲线的第二定义,列出方程,可得c4a,由等边三角形的高可得所求值【详解】解:由题意,A(a,0),F(c,0),右准线方程为x,|AF|PF|,PFA60,可得APF为等边三角形,即有P(,(a+c),由双曲线的第二定义可得,化为c23ac4a20,可得c4a,由c4,可得a,则点F到PA的距离为(a+c)5故选:D【点睛】本题考查双曲线的定义和性质,考查等边三角形的性质,以及化简运算能力,属于中档题9.如图,四边形,现将沿折起,当二面角的大小在时,直线和所成角为,则的最大值为( )A. B. C. D. 【答案】C【解析】【分析】取BD中点O,连结
9、AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围【详解】解:取BD中点O,连结AO,CO,ABBDDA4BCCD,COBD,AOBD,且CO2,AO,AOC是二面角ABDC的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,2,0),C(2,0,0),D(0,2,0),设二面角ABDC的平面角为,则,连AO、BO,则AOC,A(),设AB、CD的夹角为,则cos,cos,|1|0,1+cos的最大值为故选:C【点睛】本题考查异面直线所成角
10、的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用10.若长方体中,分别为,上的点,.分别记二面角,的平面角为,则( )A. B. C. D. 与的值有关【答案】C【解析】【分析】过G点作GMCD于M点,过M做MNEF于N点,由=1,所以,设为,则=,又则,即可比较的大小.【详解】过G点作GMCD于M点,过M做MNEF于N点,由,可知MNCE,设为,则=,又,故选:C 【点睛】(1)求二面角大小的过程可总结为:“一找、二证、三计算。” (2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂
11、直,由此可得二面角的平面角二、填空题.11.双曲线的焦点坐标是_,渐近线方程是_.【答案】 (1). (2). 【解析】【分析】利用双曲线的a,b,c的关系,直接计算【详解】解:双曲线1中a212,b23,则c2a2+b215且焦点在y轴上,双曲线1的焦点坐标是 (0,),渐近线方程是 y故答案为:(0,),y2x【点睛】本题主要考查圆锥曲线的基本元素之间的关系问题,考查学生的计算能力,属于基础题12.在空间四边形中,分别是,的中点,是上一点,且.记,则_,若,且,则_.【答案】 (1). () (2). 【解析】【分析】利用空间向量加法定理能求出(x,y,z);利用空间向量数量积公式能求出|
展开阅读全文