书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型全国通用版2019版高考数学大一轮复习第二章函数导数及其应用第12讲函数模型及其应用优选学案.doc

  • 上传人(卖家):flying
  • 文档编号:29930
  • 上传时间:2018-08-11
  • 格式:DOC
  • 页数:13
  • 大小:251.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《全国通用版2019版高考数学大一轮复习第二章函数导数及其应用第12讲函数模型及其应用优选学案.doc》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国 通用版 2019 高考 数学 一轮 复习 第二 函数 导数 及其 应用 12 模型 优选 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、=【 ;精品教育资源文库 】 = 第 12 讲 函数模型及其应用 考纲要求 考情分析 命题趋势 1.了解指数函数 、 对数函数以及幂函数的增长特征 , 结合具体实例体会直线上升 、 指数增长 、 对数增长等不同函数类型增长的含义 2 了解函数模型 (如指数函数 、 对数函数 、幂函数 、 分段函数等在社会生活中普遍使用的函数模型 )的广泛应用 . 2016 四川卷 , 2 2015 四川卷 , 8 2014 福建卷 , 9 2014 湖北卷 , 16 函数的实际应用 , 考查几个常见的函数模型:一次函数 、 二次函数 、 指数函数 、 对数函数 、幂函数模型 , 用来求解实际问题中的最值问题

    2、、 优化问题 . 分值: 5 12分 1 三种函数模型性质比较 y ax(a1) y logax(a1) y xn(n0) 在 (0, ) 上的单调性 单调 _递增 _函数 单调 _递增 _函数 单调 _递增 _函数 增长速度 越来越 _快 _ 越来越 _慢 _ 相对平稳 图象的变化 随 x 值增大 , 图象与 _y_轴接近平行 随 x 值增大 , 图象与 _x_轴接近平行 随 n 值变化而不同 值的比较 存在一个 x0, 当 xx0时 , 有 logax0, 且 a1 , b0) =【 ;精品教育资源文库 】 = 对数函数模型 f(x) blogax c(a, b, c 为常数 , a0,

    3、且 a1 , b0) 幂函数模型 f(x) axn b(a, b, n 为常数 , a0) 3 解决函数应用问题的步骤 (1)审题:弄清题意 , 分清 条件和结论 , 理顺数量关系 , 初步选择数学模型 (2)建模:将自然语言转化为数学语言 , 将文字语言转化为符号语言 , 利用数学知识 ,建立相应的数学模型 (3)解模:求解数学模型 , 得出数学结论 (4)还原:将数学问题还原为实际问题的意义 1 思维辨析 (在括号内打 “” 或 “ ”) (1)函数 y 2x的函数值在 (0, ) 上一定比 y x2的函数值大 ( ) (2)在 (0, ) 上 , 随着 x 的增大 , y ax(a1)的

    4、增长速度会超过并远远大于 y xa(a0)的增长速度 ( ) (3)“ 指数爆炸 ” 是指数型 函数 y a bx c(a0 , b0, b1) 增长速度越来越快的形象比喻 ( ) (4)指数函数模型一般用于解决变化较快 , 短时间内变化量较大的实际问题中 ( ) 解析 (1)错误当 x (0,2)和 (4, ) 时 , 2xx2, 当 x (2,4)时 , x22x. (2)正确由两者的图象易知 (3)错误增长越来越快的指数型函数是 y a bx c(a0, b1) (4)正确根据指数函数 y ax(a1)的函数值增长特点易知 2 已知 f(x) x2, g(x) 2x, h(x) log2

    5、x, 当 x (4, ) 时 , 对三个函数的增长速度进行比较 , 下列选项中正确的是 ( B ) A f(x)g(x)h(x) B g(x)f(x)h(x) C g(x)h(x)f(x) D f(x)h(x)g(x) 解析 由图象知 , 当 x (4, ) 时 , 增长速度由大到小依次为 g(x)f(x)h(x) 3 在某个物理实验中 , 测量得变量 x 和变量 y 的几组数据 , 如下表: x 0.50 0.99 2.01 3.98 y 0.99 0.01 0.98 2.00 则 x, y 最适合的函数是 ( D ) A y 2x B y x2 1 C y 2x 2 D y log2x 解

    6、析 根据 x 0.50, y 0.99, 代入计算 , 可以排除 A 项;将 x 2.01, y 0.98 代=【 ;精品教育资源文库 】 = 入计算 , 可以排除 B, C 项;将各数据代入函数 y log2x, 可知满足题意故选 D 4 一根蜡烛长 20 cm, 点燃后每小时燃烧 5 cm, 燃烧时剩下的高度 h(单位: cm)与燃烧时间 t(单位: h)的函数关系用图象表示为下图中的 ( B ) 解析 由题意知 h 20 5t(0 t4) 故选 B 5 生产一定数量的商品的全部费用称为生产成本 , 某企 业一个月生产某种商品 x 万件时的生产成本为 C(x) 12x2 2x 20(万元

    7、)一万件售价是 20 万元 , 为获取最大利润 , 该企业一个月应生产该商品数量为 ( B ) A 36 万件 B 18 万件 C 22 万件 D 9 万件 解析 利润 L(x) 20x C(x) 12(x 18)2 142, 当 x 18 时 , L(x)有最大值 一 二次函数模型 在建立二次函数模型解决实际问题中的最优问题时 , 一定要注意自变量的取值范围 , 需根据函数图象的对称轴与函数定义域在坐 标系中对应区间之间的位置关系讨论求解 , 解决函数应用问题时 , 最后还要还原到实际问题 【例 1】 为了保护环境 , 发展低碳经济 , 某单位在国家科研部门的支持下 , 进行技术攻关 , 采

    8、用了新工艺 , 把二氧化碳转化为一种可利用的化工产品已知该单位每月的处理量最少为 400 吨 , 最多为 600 吨 , 月处理成本 y(单位:元 )与月处理量 x(单位:吨 )之间的函数关系可近似的表示为 y 12x2 200x 80 000, 且每处理一吨二氧化碳得到可利用的化工产品的价值为 100 元 , 则该单位每月能否获利?如果获利 , 求出最大利润;如 果不获利 , 则国家至少需要补贴多少元才能使该单位不亏损? 解析 设该单位每月获利为 S, 则 S 100x y 100x ? ?12x2 200x 80 000 12x2 300x 80 000 =【 ;精品教育资源文库 】 =

    9、12(x 300)2 35 000, 因为 400 x600 , 所以当 x 400 时 , S 有最大值 40 000.故该单位不获利 , 需要国家每月至少补贴 40 000 元 , 才能不亏损 二 指数函数 、 对数函数模型 一般地 , 涉及增长率问题 、 存蓄利息问题 、 细胞分裂问题等 , 都可以考虑用指数函数的模型求解求解时注意指数式与对数式的互化 、 指数函数值域的影响以及实际问题中的条件限制 【例 2】 (1)某食品的保鲜时间 y(单位:小时 )与储藏温度 x(单位: ) 满足函数关系 y ekx b(e 2.718? 为自然对数的底数 , k, b 为常数 )若该食品在 0 的

    10、保鲜时间是 192小时 , 在 22 的保鲜时间是 48 小时 , 则该食品在 33 的保鲜时间是 ( C ) A 16 小时 B 20 小时 C 24 小时 D 28 小时 (2)已知一容器中有 A, B 两种菌 , 且在任何时刻 A, B 两种菌的个数乘积为定值 1010,为了简单起见 , 科学家用 PA lg nA来记录 A 菌个数的资料 , 其中 nA为 A 菌的个数 , 现有以下几种说法: PA1 ; 若今天的 PA值比昨天的 PA值增加 1, 则今天的 A 菌个数比昨天的 A 菌个数多 10; 假设科学家将 B 菌的个数控制在 5 万 , 则此时 54,假定该产品产销平衡 (1)若

    11、要该厂不亏本 , 产量 x 应控制在什么范围内? (2)该厂生产多少台时 , 可使利润最大? (3)求该厂 利润最大时产品的售价 解析 由题意得 , 成本函数 C(x) 2 x, 从而利润函数 L(x) R(x) C(x)? 3x 0.5x2 2.5, 0 x4 ,5.5 x, x4. (1)要使该厂不亏本 , 只要 L(x)0. 当 0 x4 时 , 由 L(x)0 , 得 3x 0.5x2 2.50 , 解得 1 x4 ; 当 x4 时 , 由 L(x)0 , 得 5.5 x0 , 解得 44 时 , L(x)40.(1)写出年利润 W(单位:万美元 )关于年产量 x(单位:万部 )的函数

    12、解析式; (2)当年产量为多少万部时 , 公司在该款手机的生产中所获得的利润最大?并求出最大利润 解析 (1)当 0 x40 时 , W xR(x) (16x 40) 6x2 384x 40; 当 x 40 时 , W xR(x) (16x 40) 40 000x 16x 7 360. 所以 W? 6x2 384x 40, 040. (2) 当 0 x40 时 , W 6(x 32)2 6 104, 所以 Wmax W(32) 6 104. 当 x 40 时 , W 40 000x 16x 7 360, 由于 40 000x 16x2 40 000x 16 x 1 600, 当且仅当 40 0

    13、00x 16x, 即 x 50 (40, ) 时 , 取等号 , 所以 W 取最大值为 5 760. 综合 知 , 当年产量为 32 万部时 , 取得最大利润为 6 104 万美元 =【 ;精品教育资源文库 】 = 【跟踪训练 1】 (2016 四川卷 )某公司为激励创新 , 计划逐年加大研发奖金投入若该公司 2015 年全年投入研发奖金 130 万元 , 在此基础上 , 每年投入的研发奖金比上一年增长 12%, 则该公司全年投入的研发奖金开始超过 200 万元的年份是 (参考数据: lg 1.120.05 , lg 1.3 0.11, lg 2 0.30)( B ) A 2018 年 B 2

    14、019 年 C 2020 年 D 2021 年 解析 令 2015 年为第 1 年 , 则设第 n(n N*)年该公司年投入的研发资金开始超过 200万元 根据题意得 130(1 12%)n 1200, 则 lg130(1 12%)n 1lg 200, lg 130 (n 1)lg 1.12lg 2 2, 2 lg 1.3 (n 1)lg 1.12lg 2 2, 0.11 (n 1)0.050.30 , 解得 n245. 又 n N*, n5 , 该公司全年投入的研发资金开始超过 200 万元的年份是 2019 年故选 B 课时达标 第 12 讲 解密考纲 本考点考查函数在实际生活中的应用等在

    15、近几年的高考中选择题 、 填空题 、解答题都出现过选择题 、 填空题通常排在中间位置 , 解答题往往与其他知识综合考查 , 题目难度中等 一 、 选择题 1 某电视新产品投放市场后第一个月销售 100 台 , 第二个月销售 200 台 , 第三个月销售 400 台 , 第四个月销售 790 台 , 则下列函数模型中能较好地反映销量 y(单位:台 )与投放市场的月数 x 之间关系的是 ( C ) A y 100x B y 50x2 50x 100 C y 502 x D y 100log2x 100 解析 根据函数模型的增长差异和题目中的数据可知 , 应为指数型函数模型 , 代入数据验证即可得 C 项正确 2 某食品厂定期购买面粉 , 已知该厂每天需要面粉 6 吨 , 每吨面粉的价格为 1 800 元 ,面粉的保管等其他费用为平均每吨每天 3 元 , 购买面粉每次需支付运

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:全国通用版2019版高考数学大一轮复习第二章函数导数及其应用第12讲函数模型及其应用优选学案.doc
    链接地址:https://www.163wenku.com/p-29930.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库