书签 分享 收藏 举报 版权申诉 / 24
上传文档赚钱

类型数学物理方程课件..ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2991946
  • 上传时间:2022-06-20
  • 格式:PPT
  • 页数:24
  • 大小:1.51MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数学物理方程课件..ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 物理 方程 课件
    资源描述:

    1、)(1)1(1)(xfyPyPyPynnnn n阶常系数线性微分方程的标准形式阶常系数线性微分方程的标准形式二阶常系数线性方程的标准形式二阶常系数线性方程的标准形式)(xfqyypy 常系数线性微分方程解的结构常系数线性微分方程解的结构121212( ),( )( , )( )( )( ),( )( ),( ).y xyxa bky xky xy xyxy xyx :设为定义在内的两个函数,:设为定义在内的两个函数,如果存在非零常数 ,使得,则称如果存在非零常数 ,使得,则称线性相关,否称线性相关,否称定定则线性无关则线性无关义义12( )( )0,y xyqyyypx 设是方程的两个设是方程

    2、的两个线性无关线性无关定理9.1定理9.1的解,则的解,则1122( )( )( )y xC y xC yx12,.CC是方程的通解,其中为任意常数是方程的通解,其中为任意常数二阶常系数齐次线性方程解法二阶常系数齐次线性方程解法02 qprr特征方程特征方程,2422,1qppr 特征根特征根0 qyypy(1) (1) 有两个不相等的实根有两个不相等的实根1r2r,11xrey ,22xrey 两个线性无关的特解两个线性无关的特解得齐次方程的通解为得齐次方程的通解为;2121xrxreCeCy 2(40)pq 特征根为特征根为(2) (2) 有两个相等的实根有两个相等的实根2(40)pq 所

    3、以齐次方程的通解为所以齐次方程的通解为;)(121xrexCCy ,11xrey ,221prr 一特解为一特解为特征根为特征根为另一特解另一特解;2xrxey (3) (3) 有一对共轭复根有一对共轭复根,1 jr ,2 jr 2(40)pq ,cos1xeyx,sin2xeyx方程的通解为方程的通解为).sincos(21xCxCeyx 特征根为特征根为02 qprr0 qyypy 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr 实根实根21rr 复根复根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCeyx )(xfq

    4、yypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程对应齐次方程对应齐次方程, 0 qyypy通解结构通解结构*( )( )( ),y xY xyx 二阶常系数非齐次线性方程*( )( )( )yxypyqyf xY x如果是方程的一个特解,如果是方程的一个特解,是方程对应的齐次方程的通解,则方程的通解是方程对应的齐次方程的通解,则方程的通解为为12( )( )y xyx定理定理如果与分别为方程如果与分别为方程12( ),( )ypyqyfxypyqyfx 和和Y的特解,是方程的特解,是方程, 0 qyypy的通解,则的通解,则*12( )( )( )( )y xY xyxyx 12(

    5、)( ).ypyqyfxfx 是是方方程程的的通通解解常见类型常见类型( ),nP x( ),xnP x e 12(cossin)xeAxAx 难点难点:如何求特解?如何求特解?方法方法:待定系数法待定系数法.1.( )nypyqyP x 设非齐方程特解为设非齐方程特解为*( )yQ x为多项式,为多项式,代入方程代入方程( )( )( )( )nQxpQ xqQ xP x1011( )0nnnnQ xa xa xaqxa 时时,( )( )( )( )nQxpQ xqQ xP x01,.naaa其中为待定系数其中为待定系数0 ,0qp时时, 可设, 可设12011( )nnnnQ xa xa

    6、 xaxa x 0 ,0qp时时, 方程通解可由, 方程通解可由( )nyP x .直接积分得到直接积分得到设非齐方程特解为设非齐方程特解为*( )xyQ x e 代入原方程代入原方程2( )(2)( )() ( )( )nQxp Q xpq Q xP x不是特征方程的根,不是特征方程的根,若若 )1(, 02 qp ( )( ),nQ xQx 可可设设是特征方程的单根,是特征方程的单根,若若 )2(, 02 qp , 02 p ( )( ),nQ xxQx 可设可设*( );xnyQx e *( );xnyxQx e (2.)xnypyqyP x e 是特征方程的重根,是特征方程的重根,若若

    7、 )3(, 02 qp , 02 p 2( )( ),nQ xx Qx 可可设设综上讨论综上讨论*( ) ,kxnyx e Qx 设设 是重根是重根是单根是单根不是根不是根2,10k*2( ).xnyx Qx e 特别地特别地xAeqyypy 2*2,22xxxAepqAyxepAx e 不是特征方程的根不是特征方程的根是特征方程的单根是特征方程的单根是特征方程的重根是特征方程的重根.232的通解的通解求方程求方程xxeyyy 解解对应齐次方程通解对应齐次方程通解特征方程特征方程, 0232 rr特征根特征根,2121 rr,221xxeCeCY 是单根,是单根,2 ,)(2xeBAxxy 设

    8、设代入方程代入方程, 得得xABAx 22,121 BAxexxy2)121( 于是于是原方程通解为原方程通解为.)121(2221xxxexxeCeCy 例例1 1型型二、二、sin)(cos)()(xxPxxPexfnlx sincos)(xPxPexfnlx 22ieePeePexixinxixilx xinlxinleiPPeiPP)()()22()22( ,)()()()(xixiexPexP ,)()(xiexPqyypy 设设,)(1ximkeQxy 利用欧拉公式利用欧拉公式,)()(xiexPqyypy 设设,)(2ximkeQxy ximximxkeQeQexy ,sin)(

    9、cos)()2()1(xxRxxRexmmxk 次次多多项项式式,是是其其中中mxRxRmm)(),()2()1( nlm,max ,10 是单根是单根不是根不是根 iik.sin4的通解的通解求方程求方程xyy 解解对应齐方通解对应齐方通解,sincos21xCxCY 作辅助方程作辅助方程,4ixeyy ,是单根是单根i ,*ixAxey 故故代入上式代入上式, 42 Ai,2iA ,)cos2(sin22*ixxxxixeyix 所求非齐方程特解为所求非齐方程特解为,cos2xxy 原方程通解为原方程通解为.cos2sincos21xxxCxCy (取虚部)(取虚部)例例2 2.2cos的

    10、通解的通解求方程求方程xxyy 解解对应齐方通解对应齐方通解,sincos21xCxCY 作辅助方程作辅助方程,2ixxeyy ,2 不不是是特特征征方方程程的的根根i ,)(2*ixeBAxy 设设代入辅助方程代入辅助方程 13034ABAi,9431iBA ,,)9431(2*ixeixy 例例3 3)2sin2)(cos9431(xixix 所求非齐方程特解为所求非齐方程特解为,2sin942cos31xxxy 原方程通解为原方程通解为.2sin942cos31sincos21xxxxCxCy ,)2sin312cos94(2sin942cos31ixxxxxx (取实部)(取实部)注意

    11、注意xAexAexx sin,cos.)(的实部和虚部的实部和虚部分别是分别是xiAe .tan的通解的通解求方程求方程xyy 解解对应齐方通解对应齐方通解,sincos21xCxCY 用常数变易法求非齐方程通解用常数变易法求非齐方程通解,sin)(cos)(21xxcxxcy 设设, 1)( xw,cos)(tanseclnsin)(2211 CxxcCxxxxc原方程通解为原方程通解为.tanseclncossincos21xxxxCxCy 例例4 4三、小结三、小结可可以以是是复复数数) (),()()1(xPexfmx );(xQexymxk ,sin)(cos)()()2(xxPxx

    12、Pexfnlx ;sin)(cos)()2()1(xxRxxRexymmxk (待定系数法待定系数法)只含上式一项解法只含上式一项解法:作辅助方程作辅助方程,求特解求特解, 取取特解的实部或虚部特解的实部或虚部, 得原非齐方程特解得原非齐方程特解.思考题思考题写出微分方程写出微分方程xexyyy228644 的待定特解的形式的待定特解的形式. 思考题解答思考题解答设设 的特解为的特解为2644xyyy *1yxeyyy2844 设设 的特解为的特解为*2y*2y *1*yy 则所求特解为则所求特解为0442 rr特征根特征根22, 1 rCBxAxy 2*1xeDxy22*2 (重根)(重根)*2y *1*yy CBxAx 2.22xeDx

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学物理方程课件..ppt
    链接地址:https://www.163wenku.com/p-2991946.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库