书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型8.6.2直线与平面垂直(第一课时)教学设计-新人教A版(2019)高中数学必修第二册高一下学期.docx

  • 上传人(卖家):大布丁
  • 文档编号:2990534
  • 上传时间:2022-06-19
  • 格式:DOCX
  • 页数:7
  • 大小:98.45KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《8.6.2直线与平面垂直(第一课时)教学设计-新人教A版(2019)高中数学必修第二册高一下学期.docx》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    8.6 直线 平面 垂直 第一 课时 教学 设计 新人 2019 高中数学 必修 第二 一下 学期 下载 _必修第二册_人教A版(2019)_数学_高中
    资源描述:

    1、8.6.2直线与平面垂直(第一课时)(人教A版普通高中教科书数学必修第二册第八章)一、教学目标1.理解直线与平面垂直的意义,理解点到平面的距离、直线与平面成角的概念;2.探索直线与平面垂直的判定定理,能应用判定定理证明直线和平面垂直的简单问题,能求简单的直线与平面所成的角;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力、感悟和体验“空间问题转化为平面问题”“线面垂直转化为线线垂直”,进一步感悟数学中以“化繁为简”的转化思想.二、教学重难点重点:1.对直线与平面垂直的定义和判定定理的理解难点:1.概括线面垂直的定义和判定定理时如何将“线面垂直”转化为“线线垂直”2.求直线和平面所成角时

    2、,直线的射影的寻找学生初接触会有点难度.三、教学过程1.复习引入回顾直线和平面的位置关系如下图1:图1【设计意图】由复习旧知可以知道,直线与平面垂直是直线与平面相交关系中的一种,为后续特别是线面角作铺垫.2.观察归纳,形成概念2.1创设情境,引发思考问题1:在日常生活中,我们对直线与平面垂直有很多感性认识,比如,图中旗杆与地面的垂直关系,还有书脊与桌面的垂直关系,给我们以直线与平面垂直的形象.那么什么叫做直线与平面垂直呢?【设计意图】列举生活中的例子,使学生对直线与平面垂直的概念获得一定的感性认识,化抽象为具体.然后再应到学生概括出定义.2.2归纳概括,得出定义问题2:能否把直观的形象数学化?

    3、用确切的数学语言刻画直线与平面垂直思考: (1)书脊AB与桌面上经过B点的直线有什么关系? (2)书脊AB与桌面上不过B点的直线有什么关系? (3)书脊AB与桌面上的任意直线有什么关系?图2追问1:怎么理解“任意”?结论:直线AB垂直于平面内的任意一条直线,那么它就垂直于这个平面追问2:可以用“无数”代替“任意”吗?直线与平面垂直的定义:如果一条直线l垂直于平面 内的任意一条直线,我们就说直线 l 与平面 互相垂直.记作:图4【设计意图】这里是对直线垂直于平面定义的形成过程,结合几何直观感知,就能够在问题的引导下获得思路,利用转化的思想归纳出线面垂直的定义,并让学生体会到定义的本质是直线与直线

    4、垂直;强调直线要与平面内的任意直线都垂直,不等于无数.并规范表达,感受数学思维的严密.2.3知识拓展:图3点到平面距离的定义:过点P作直线PO垂直于平面,垂足为O,垂线段PO长度就是点P到平面的距离.【活动预设】教师提出问题,师生共同探讨,直观感知和操作确认“过一点垂直于已知平面的直线有且只有一条”,进而提出点到平面的距离的概念,为求棱锥体积做铺垫.【设计意图】类比平面几何有关性质,结合直线与平面垂直的定义,给出空间类似的性质;呼应前面棱锥的高的概念.3 实验探究,得出定理3.1 简单探究,得到猜想问题:3: 如果直线l与平面内的一条(两条,无数条)直线垂直,则直线和平面互相垂直?【活动预设】

    5、师生共同探讨以下问题:图4(1) 一条直线图4(2) 无数条直线(3) 两条平行直线(4) 两条相交直线【设计意图】结合图例,让学生感受直线与平面垂直需要两条相交直线,得到猜想,找到一种替代定义去证明线面垂直的办法.3.2 动手操作,验证猜想问题4:为什么两条相交直线可以?怎么去验证这件事情?【活动预设】教师提出问题,并引导学生动手操作;如图准备一块三角形纸片ABC,过顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,并请学生思考;(1) 折痕AD与桌面垂直吗?(2) 如何翻折才能得到使折痕AD与桌面垂直?为什么?这样就初步验证了刚才的猜想:如果一条直线和一个平面内的两条相交直线图

    6、5都垂直,这条直线就和这个平面垂直.追问(1):为什么一条直线和一个平面内的两条相交直线图4图4图4图4都垂直,这条直线就和这个平面垂直?可能的回答:两条相交直线可以确定一个平面?追问(2):两条平行直线也可以确定一个平面,为什么两条平行直线都垂直于一条直线的时候,直线和平面就不垂直呢?【设计意图】通过实践操作,让学生有直观感受,初步判断刚才的猜想是正确的;不断追问,引导学生进一步的思考,两条相交直线可以确定一个平面,但是更主要的是他们可以表示这个平面内的所以直线,这里可以用平面向量基本定理来给出解释,从而进一步对于判定定理的正确性给出说明,让学生体会直线与平面垂直向直线与直线垂直转化,体会感

    7、知化无限为为有限,以及归纳猜想、思辨论证这一研究问题的思维过程.问题5:试分别用文字语言、图形语言、符号语言来表述直线与平面的判定定理.【设计意图】实现图形语言、文字语言、符号语言之间的转换是让学生进一步理解判定定理的需要,也是发展学生逻辑思维的需要.4 巩固练习,典例剖析例1(课本例3)求证:如果两条平行线中的一条直线垂直与一个平面,那么另一条直线也垂直与这个平面.追问(1):你能根据条件与结论画出示意图,写出已知、求证吗?追问(2):结合所画图形,你认为该如何证明此问题?【活动预设】教师要求学生写出已知求证,并与学生共同分析证明思路:根据直线与平面垂直的判定定理,只需证明另一条直线垂直于这

    8、个平面内的两条相交直线即可.在此问题中,需要构造两条相交直线,既需要做辅助线.可以请一名同学板书,教师反馈,完成证明.追问(3):你还有不同证明方法吗?可能的答案 :尝试用定义证明.【设计意图】通过例题,巩固直线和平面垂直的判定定理,并结合例题让学生把握判定定理中“两条相交直线”这一关键.通过引导学生从线面垂直的定义出发进行证明时,提高学生思维的灵活性,让学生认识到证明线面垂直的不同方法,从而感受判定定理证明的优越性.5 直线与平面所成的角及其应用问题6:直线与平面垂直是直线与平面相交的一种特殊情况.当它们不垂直时,如图,可以发现,不同的直线与平面相交的情况也是不同的,如何刻画这种不同呢?【活

    9、动预设】教师提出问题,给出斜线的概念.引导学生发现,斜线与平面相交位置的不同在于他们相对于平面的“倾斜程度不同”,进而给出直线与平面所成角的概念,并用它来刻画斜线和平面的位置关系.图6【设计意图】引出直线与平面所成角的概念,同时建立平面的一条斜线在平面上的射影的概念.例2(课本例4):如图,正方体ABCDA1B1C1D1中,求直线A1B与平面A1DCB1所成的角.追问:有直线与平面成角的概念知,应该先找到A1B在平面A1DCB1内的射影,怎样找到呢?【活动预设】教师引导学生对题目进行分析,从要解决的问题出发,要求直线和平面的成角,要先找到这条直线在平面上的射影;进而要找到这个平面的垂线,再利用直线与平面垂直的判定定理,问题图7可以解决.然后书写证明过程,规范解题.【设计意图】 通过例题教学,巩固直线和平面所成角的概念,以及直线与平面垂直的判定定理.结合分析题目,培养学生养成回归定义思考问题的意识,并引导学生形成解决问题的一般思路,规范书写.6 归纳小结,布置作业问题:本节课你学到了什么?【活动预设】教师与学生一起回顾本节课所学的主要内容,主要从下列2点进行总结:(1)知识内容(2)数学思想方法【设计意图】 通过小结,梳理本节所学的知识点,并回顾在学习的过程中所采用的思想方法,培养学生对学习内容的反思意识和习惯,建立知识系统,可以用于后续知识问题的解决.布置作业:教材152页练习.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:8.6.2直线与平面垂直(第一课时)教学设计-新人教A版(2019)高中数学必修第二册高一下学期.docx
    链接地址:https://www.163wenku.com/p-2990534.html
    大布丁
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库