天津市河北区2020-2021学年高一下学期期中考试数学试卷 (解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《天津市河北区2020-2021学年高一下学期期中考试数学试卷 (解析版).docx》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津市河北区2020-2021学年高一下学期期中考试数学试卷 解析版 天津市 河北区 2020 2021 学年 一下 学期 期中考试 数学试卷 解析 下载 _考试试卷_数学_高中
- 资源描述:
-
1、天津市河北区2020-2021学年高一下学期数学期中考试试卷一、单选题(共10题;共40分)1.下列结论中,正确的是( ) A.若两个向量相等,则它们的起点和终点分别重合B.若向量 a 与 b 都是单位向量,则 a=bC.若向量 a 与 b 是平行向量,则 a 与 b 的方向相同D.若两个向量相等,则它们的模相等2.已知向量 a=(2,4) , b=(-1,1) ,则 2a-b= ( ) A.(5,7)B.(5,9)C.(3,7)D.(3,9)3.已知 i 是虚数单位,则 2i1-i= ( ) A.-1+iB.1+iC.1-iD.-1-i4.如图所示,已知在 ABC 中,D是边AB上的中点,则
2、 CD= ( ) A.BC-12BA B.-BC+12BA C.-BC-12BA D.BC+12BA5.下面给出的命题中,正确的个数是( ) 一个棱柱至少有5个面平行六面体中相对的两个面是全等的平行四边形正棱锥的侧面是全等的等腰三角形有两个面平行且相似,其他各个面都是梯形的多面体是棱台A.1B.2C.3D.46.用斜二测画法画水平放置的 ABC 的直观图 ABC 如图所示,则在 ABC 的三边及中线AD中,最长的线段是( ) A.ABB.ADC.BCD.AC7.棱长为a的正四面体的表面积为( ) A.312a2B.38a2C.34a2D.3a28.已知 ABC 的内角A,B,C所对的边分别为a
3、,b,c,若 a=2 , b=2 , A=6 ,则满足条件的 ABC ( ) A.无解B.有一个解C.有两个解D.不能确定9.已知 ABC 的内角A,B,C所对的边分别为a,b,c,若 b=2acosC ,则 ABC 的形状为( ) A.等腰三角形B.直角三角形C.等边三角形D.以上均不正确10.如图所示,隔河可以看到对岸两目标A,B,但不能到达,现在岸边取相距4km的C,D两点,测得ACB75,BCD45,ADC30,ADB45(A,B,C,D在同一平面内),则两目标A,B间的距离为( )km.A.853B.4153C.2153D.2 5二、填空题(共5题;共20分)11.已知i是虚数单位,
4、则复数 1+2i 在复平面内对应的点的坐标为_. 12.已知向量 a=(1,-2) , b=(2,) ,若 ab ,则实数 的值为_. 13.已知 |a|=6 , e 为单位向量,若向量 a 与 e 的夹角为 135 ,则向量 a 在 e 上的投影向量为_. 14.长方体 ABCD-A1B1C1D1 中, AB=1 , AD=2 , AA1=3 ,则三棱锥 D1-ABC 的体积为_. 15.在 ABC 中, AB=1 , AC=2 , (AB+AC)AB=2 ,则角A的大小为_. 三、解答题(共4题;共40分)16.已知向量 |a|=3 , |b|=2 , a 与 b 的夹角为 3 . (1)
5、求 ab 及 |a+b| ; (2)求 (a+2b)(a-3b) . 17.已知复数 z=(m2-m)+(m-1)i(mR) . (1)若 z 为实数,求 m 值; (2)若 z 为纯虚数,求 m 值; (3)若复数 z 对应的点在第一象限,求 m 的范围. 18.已知 ABC 的内角A,B,C所对的边分别为a,b,c,且 a=2 , cosB=35 . (1)若 b=4 ,求 sinA 的值及 ABC 的外接圆半径; (2)若 ABC 的面积为4,求b和c的值. 19.已知 ABC 的内角A,B,C所对的边分别为a,b,c,向量 m=(cosA,sinB) , n=(a,3b) ,且 m/n
6、 . (1)求角A的大小; (2)若 a=7 , b=2 ,求边c和 ABC 的面积. 答案解析部分一、单选题(共10题;共40分)1.下列结论中,正确的是( ) A.若两个向量相等,则它们的起点和终点分别重合B.若向量 a 与 b 都是单位向量,则 a=bC.若向量 a 与 b 是平行向量,则 a 与 b 的方向相同D.若两个向量相等,则它们的模相等【答案】 D 【考点】向量的模,单位向量,平行向量与共线向量,相等向量与相反向量 【解析】【解答】A两个向量相等,则两个向量可以平移至起点和终点重合,但两个向量不一定起点和终点重合,故错误; B单位向量的模长都相等,但是方向不一定相同,故错误;C
7、若两个向量是平行向量,则这两个向量的方向也可以相反,故错误;D相等向量的模长相等,方向相同,故正确,故答案为:D. 【分析】利用相等向量的判断方法结合向量的几何意义,再利用单位向量的定义和向量相等的关系,再结合平行向量的对应推出两向量的方向的关系,再利用向量相等与向量的模的关系,进而选出正确选项。2.已知向量 a=(2,4) , b=(-1,1) ,则 2a-b= ( ) A.(5,7)B.(5,9)C.(3,7)D.(3,9)【答案】 A 【考点】平面向量的坐标运算 【解析】【解答】因为 2a=(4,8) ,所以 2a-b=(4,8)-(-1,1) =(5,7), 故答案为:A. 【分析】利
8、用已知条件结合数乘向量的坐标表示和两向量减法的坐标运算,从而求出向量2a-b的坐标表示。3.已知 i 是虚数单位,则 2i1-i= ( ) A.-1+iB.1+iC.1-iD.-1-i【答案】 A 【考点】复数的代数表示法及其几何意义,复数代数形式的乘除运算 【解析】【解答】因为 2i1-i=2i(1+i)2=-1+i 。 故答案为:A 【分析】利用复数的乘除法运算法则,进而求出复数。4.如图所示,已知在 ABC 中,D是边AB上的中点,则 CD= ( ) A.BC-12BAB.-BC+12BAC.-BC-12BAD.BC+12BA【答案】 B 【考点】向量加减混合运算及其几何意义 【解析】【
9、解答】 CD=BD-BC=12BA-BC=-BC+12BA . 故答案为:B 【分析】根据题意由向量的加、减运算法则整理即可得出答案。5.下面给出的命题中,正确的个数是( ) 一个棱柱至少有5个面平行六面体中相对的两个面是全等的平行四边形正棱锥的侧面是全等的等腰三角形有两个面平行且相似,其他各个面都是梯形的多面体是棱台A.1B.2C.3D.4【答案】 C 【考点】棱柱的结构特征,棱锥的结构特征,棱台的结构特征 【解析】【解答】根据棱柱的特征可得,一个棱柱的底面至少有三条边,所以至少有5个面;即正确; 由平行六面体的概念和性质,可知:平行六面体中相对的两个面是全等的平行四边形;即正确;根据正棱锥
10、的特征可得,正棱锥的侧面是全等的等腰三角形;即正确;根据棱台的特征可知:棱台是棱锥截得的,侧棱的延长线要交于同一点。有两个面平行且相似,其他各个面都是梯形的多面体,不能保证侧棱的延长线交于同一点,因此该多面体不一定是棱台,即错;因此正确的个数有3个.故答案为:C. 【分析】利用棱柱、棱锥和棱台以及平行六面体的结构特征,进而找出正确命题的个数。6.用斜二测画法画水平放置的 ABC 的直观图 ABC 如图所示,则在 ABC 的三边及中线AD中,最长的线段是( ) A.ABB.ADC.BCD.AC【答案】 D 【考点】斜二测画法直观图 【解析】【解答】根据 ABC 的形状可知 ABC 的形状如下图:
11、 由图可知,最长的线段为AC。故答案为:D. 【分析】利用已知条件结合斜二测画直观图的方法,进而还原原平面图形,进而找出在 ABC 的三边及中线AD中的最长的线段。7.棱长为a的正四面体的表面积为( ) A.312a2B.38a2C.34a2D.3a2【答案】 D 【考点】棱柱、棱锥、棱台的侧面积和表面积 【解析】【解答】因为正四面体是各面都是全等的等边三角形, 又因为该正四面体的棱长为 a ,所以该正四面体的表面积为 S=412aa2-(a2)2=3a2 。故答案为:D. 【分析】因为正四面体是各面都是全等的等边三角形,又因为该正四面体的棱长为 a ,再结合正四面体的表面积公式,进而求出棱长
12、为a的正四面体的表面积。8.已知 ABC 的内角A,B,C所对的边分别为a,b,c,若 a=2 , b=2 , A=6 ,则满足条件的 ABC ( ) A.无解B.有一个解C.有两个解D.不能确定【答案】 C 【考点】正弦定理 【解析】【解答】因为 a=2A ,所以 sinB=basinA=22 ,因为 B 为三角形内角,所以 6B56 ,因此 B=4 或 B=34 ,若 B=4 ,则 C=712 符合题意;若 B=34 ,则 C=12 ,符合题意;因此 ABC 有两个解;故答案为:C. 【分析】利用已知条件结合正弦定理,从而结合三角形中角之间的大小关系和三角形中内角的取值范围,再结合分类讨论
展开阅读全文