书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型广东省梅州市2020-2021学年高一下学期期末考试数学试卷(含答案).docx

  • 上传人(卖家):大布丁
  • 文档编号:2989970
  • 上传时间:2022-06-19
  • 格式:DOCX
  • 页数:26
  • 大小:309.40KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《广东省梅州市2020-2021学年高一下学期期末考试数学试卷(含答案).docx》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省 梅州市 2020 2021 学年 一下 学期 期末考试 数学试卷 答案 下载 _必修第二册_人教A版(2019)_数学_高中
    资源描述:

    1、广东省梅州市2020-2021学年高一下学期数学期末考试试卷一、单选题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 z=(2+i)(1-2i) ,则 z= ( ) A.3+4iB.3-4iC.4+3iD.4-3i2.一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( ) A.82B.22C.43D.233.设 A 、 B 为两个互斥事件,且 P(A)0 , P(B)0 ,则下列各式错误的是( ) A.P(AB)=0B.P(AB)=P(A)P(B)C.P(AB)=1D.P(AB)=P

    2、(A)+P(B)4.已知 , 是两个不同的平面, m , n 是两条不同的直线,则下列正确的结论是( ) A.若 m/n , m/ , n/ ,则 /B.若 / , m , n ,则 m/nC.若 mn , m ,则 n/D.若 mn , m , n ,则 5.已知平面向量 a=(1,-3) , b=(4,-2) , a+b 与 a 垂直,则 的值是( ) A.-1B.1C.-2D.26.已知一组样本数据 x1 , x2 , x3 , x10 ,且 x12+x22+x32+x102=185 ,平均数 x=4 ,则该组数据的方差 s2= ( ) A.1B.32C.2D.527.祖暅(公元5-6世

    3、纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为 2b ,高皆为 a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面 上,以平行于平面 的平面于距平面 任意高 d 处可横截得到 S圆 及 S环 两截面,可以证明 S圆=S环 总成立.据此,短轴 AB 长为 6cm ,长半轴 CD 为 4cm 的椭半球体的体积是( ) A.24cm3B

    4、.48cm3C.192cm3D.384cm38.已知长方体 ABCD-A1B1C1D1 的高 AA1=2,AC=26, AB1=x,AD1=y ,则当 x+y 最大时,二面角 A-B1D1-C1 的余弦值为( ) A.155B.-155C.55D.-55二、多选题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知复数 z 满足 (1-i)z=2i ( i 是虚数单位),则下列关于复数 z 的结论正确的是( ) A.|z|=2B.复数 z 的共轭复数为 z=-1-iC.复平面内表示复数 z 的点位于第三

    5、象限D.复数 z 是方程 x2+2x+2=0 的一个根10.已知 ABC 的内角 A,B,C 所对边的长分别为 a,b,c , A=4 , a=m , b=4 ,若满足条件的 ABC 有两个,则 m 的值可以是( ) A.22B.23C.3D.411.在疫情防护知识竞赛中,对某校的 2000 名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为 40,50) , 50,60) , 60,70) , 70,80) , 80,90) , 90,100 , 60 分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( ) A.成绩在 70,80) 的考

    6、生人数最多B.不及格的考生人数为500C.考生竞赛成绩的众数为75分D.考生竞赛成绩的中位数约为75分12.正方体 ABCD-A1B1C1D1 中,E是棱 DD1 的中点,F在侧面 CDD1C1 上运动,且满足 B1F/ 平面 A1BE .以下命题正确的有( ) A.侧面 CDD1C1 上存在点F , 使得 B1FCD1B.直线 B1F 与直线 BC 所成角可能为 30C.平面 A1BE 与平面 CDD1C1 所成锐二面角的正切值为 22D.设正方体棱长为1,则过点E , F , A的平面截正方体所得的截面面积最大为 52三、填空题(本大题共4小题,每小题5分,共20分)13.向量 a , b

    7、 满足 |a|=1 , |b|=2 , a 与 b 的夹角为120,则 |2a-b|= _. 14.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为_. 15.在边长为 3 的菱形 ABCD 中, BD=33 ,将菱形 ABCD 沿其对角线 AC 折成直二面角 B-AC-D ,若 A,B,C,D 四点均在某球面上,则该球的表面积为_. 16.某校为了普及“一带一路”知识,举行了一次知识竞赛,满分10分

    8、,有10名同学代表班级参加比赛,已知学生得分均为整数,比赛结束后统计这10名同学得分情况如折线图所示,则这10名同学成绩的极差为_,80%分位数是_. 四、解答题(本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)17.在三角形 ABC 中, AB=2,AC=1,ACD=2 ,D是线段 BC 上一点,且 BD=12DC ,F为线段 AB 上一点 (1)若 AD=xAB+yAC ,求 x-y 的值; (2)求 CFFA 的取值范围; 18.如图,在正方体 ABCD-A1B1C1D1 中,棱长为1, E 为 B1D1 的中点, ACBD=O . (1)求证: AC 平面 B1

    9、BDD1 ; (2)求证: DE/ 平面 ACB1 ; (3)求三棱锥 E-ACB1 的体积. 19.在 bcosC+ccosB=2acosC ; csin B-3bcosC=0 ; (a+b+c)(a+b-c)=3ab 这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目 在 ABC 中,内角A,B,C的对边分别为a,b,c , 且_(1)求角C; (2)若 c=2 , ABC 的面积为 34 ,求 ABC 的周长 (注:如果选择多个条件分别解答,按第一个解答计分)20.我市某校为了解高一新生对文理科的选择,对1000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,

    10、400名学生选择文科.分别从选择理科和文科的学生中随机各抽取20名学生的数学成绩得如下累计表: 分数段理科人数文科人数40,50) 50,60) 60,70) 70,80) 80,90) 90,100) (1)利用统计表数据分析:选择文理科学生的数学平均分及数学成绩对学生选择文理科的影响;并绘制选择理科的学生的数学成绩的频率分布直方图; (2)从数学成绩不低于70分的选择理科和文科的学生中各取一名学生的数学成绩,求选取理科学生的数学成绩至少高于选取文科学生的数学成绩一个分数段的概率. 21.如图,在三棱柱 ABC-A1B1C1 中,平面 A1ACC1 底面 ABC , AB=BC=2 , AC

    11、B=30 , C1CB=60 , BC1A1C , E 为 AC 的中点,侧棱 CC1=2 (1)求证: A1C 平面 C1EB ; (2)求直线 CC1 与平面 ABC 所成角的余弦值 22.芹洋湿地公园是以水为主题的公园,以湿地良好生态环境和多样化湿地景观资源为基础的生态型主题公园.欲在该公园内搭建一个形状为平面凸四边形 ABCD 的休闲、观光及科普宣教的平台,如图所示,其中 DC=4 (单位:百米), DA=2 (单位:百米), ABC 为正三角形.建成后 BCD 将作为人们旅游观光、休闲娱乐的区域, ABD 将作为科普宣教湿地功能利用、弘扬湿地文化的区域. (1)当 ADC=3 时,求

    12、旅游观光、休闲娱乐的区域 BCD 的面积; (2)求旅游观光、休闲娱乐的区域 BCD 面积的最大值. 答案解析部分一、单选题1.设 z=(2+i)(1-2i) ,则 z= ( ) A.3+4iB.3-4iC.4+3iD.4-3i【答案】 D 【考点】复数的代数表示法及其几何意义,复数代数形式的乘除运算 【解析】【解答】 z=(2+i)(1-2i)=2-4i+i-2i2=4-3i 。 故答案为:D 【分析】利用已知条件结合复数的乘法运算法则,进而求出复数z。2.一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( ) A.82B.22C.

    13、43D.23【答案】 A 【考点】斜二测画法直观图 【解析】【解答】根据直观图和斜二测画法规则可知,原平面图形是一个平行四边形,一边长为 2 ,高为 42 , 如图: 则此平行四边形的面积为 242=82 。故答案为:A 【分析】利用已知条件结合斜二测画法画直观图的方法,从而得出原平面图形是一个平行四边形,一边长为 2 ,高为 42 ,再利用平行四边形的面积求解公式,进而求出原平面图形的面积。3.设 A 、 B 为两个互斥事件,且 P(A)0 , P(B)0 ,则下列各式错误的是( ) A.P(AB)=0B.P(AB)=P(A)P(B)C.P(AB)=1D.P(AB)=P(A)+P(B)【答案

    14、】 B 【考点】互斥事件与对立事件,互斥事件的概率加法公式,相互独立事件的概率乘法公式 【解析】【解答】对A,B, A 、 B 为两个互斥事件,且 P(A)0 , P(B)0 , AB= ,即 P(AB)=0 ,A符合题意,B不符合题意;对C, AB 为必然事件,即 P(AB)=1 ,C符合题意;对D, A 、 B 为两个互斥事件,P(AB)=P(A)+P(B) ,D符合题意。故答案为:B. 【分析】利用已知条件结合互斥事件加法求概率公式、独立事件乘法求概率公式和对立事件求概率公式,进而找出各式错误的选项。4.已知 , 是两个不同的平面, m , n 是两条不同的直线,则下列正确的结论是( )

    15、 A.若 m/n , m/ , n/ ,则 /B.若 / , m , n ,则 m/nC.若 mn , m ,则 n/D.若 mn , m , n ,则 【答案】 D 【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定,平面与平面平行的判定,平面与平面垂直的判定 【解析】【解答】对于A,如图所示, 与 相交,A不符合题意; 对于B,如图所示, m 与 n 可能异面,B不符合题意;对于C,如图所示, n 在 内,C不符合题意;对于D,由于 mn , m ,可得 n 或 n/ ,又因为 n ,于是由面面垂直判定定理可得 。故答案为:D. 【分析】利用已知条件结合面面平行的判定定理、线线平

    16、行的判断方法、线面平行的判定定理、面面垂直的判定定理,从而找出正确的结论。5.已知平面向量 a=(1,-3) , b=(4,-2) , a+b 与 a 垂直,则 的值是( ) A.-1B.1C.-2D.2【答案】 A 【考点】数量积的坐标表达式,数量积判断两个平面向量的垂直关系 【解析】【解答】因为 a=(1,-3) , b=(4,-2) ,所以 a+b=(1,-3)+(4,-2)=(+4,-3-2) , 因为 a+b 与 a 垂直,所以 (a+b)a=0 ,即 +4+9+6=0 ,得 =-1 。故答案为:A 【分析】利用已知条件结合两向量垂直数量积为0 的等价关系,再结合数量积的坐标表示,进

    17、而求出 的值。6.已知一组样本数据 x1 , x2 , x3 , x10 ,且 x12+x22+x32+x102=185 ,平均数 x=4 ,则该组数据的方差 s2= ( ) A.1B.32C.2D.52【答案】 D 【考点】极差、方差与标准差 【解析】【解答】由题意可知, x1+x2+x3+x10=410=40 , s2=(x1-4)2+(x2-4)2+(x3-4)2+(x10-4)210=x12+x22+x32+x102-8(x1+x2+x3+x10)+161010=185-840+161010=2.5 。故答案为:D 【分析】利用已知条件结合平均数公式,再结合方差公式,进而求出该组数据的

    18、方差。7.祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为 2b ,高皆为 a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面 上,以平行于平面 的平面于距平面 任意高 d 处可横截得到 S圆 及 S环 两截面,可以证明 S圆=S环 总成立.据此,短轴 AB 长为 6cm ,长半轴 CD 为 4cm 的椭半球体的体

    19、积是( ) A.24cm3B.48cm3C.192cm3D.384cm3【答案】 A 【考点】旋转体(圆柱、圆锥、圆台) 【解析】【解答】由题意可知,短轴 AB 长为 6cm ,长半轴 CD 为 4cm 的椭半球体的体积为: V=12V椭球=V圆柱-V圆锥=324-13324=24(cm3) 。故答案为:A 【分析】利用已知条件结合圆柱的体积公式和圆锥的体积公式,再结合作差法,从而求出椭半球体的体积。8.已知长方体 ABCD-A1B1C1D1 的高 AA1=2,AC=26, AB1=x,AD1=y ,则当 x+y 最大时,二面角 A-B1D1-C1 的余弦值为( ) A.155B.-155C.

    20、55D.-55【答案】 B 【考点】基本不等式在最值问题中的应用,二面角的平面角及求法,余弦定理 【解析】【解答】设 AB=a , BC=b , 则由题意得: a2+b2=(26)2 , a2+22=x2 , b2+22=y2 ,所以 x2+y2=32 ,由基本不等式得: (x+y)22(x2+y2)=64 ,当且仅当 x=y=4 时, x+y 取得最大值 8 ,此时 a=b=23 , AB1=AD1=4 ,所以 B1D1=AC=26 ,取 B1D1 的中点 T ,连接 AT , C1T , AC1 ,如图,则 ATB1D1 , C1TB1D1 ,则 ATC1 就是二面角 A-B1D1-C1

    21、的平面角,在等腰三角形 AB1D1 中,因为 AB1=AD1=4 , B1D1=26 ,所以 AT=10 ,在等腰三角形 C1B1D1 中,因为 C1B1=C1D1=23 , B1D1=26 ,所以 C1T=6 ,在长方体 ABCD-A1B1C1D1 ,求得 AC1=27 ,故在三角形 AC1T 中,由余弦定理得 cosATC1=AT2+TC12-AC122ATTC1=-155 。故答案为:B. 【分析】利用已知条件结合长方体的结构特征,再结合二面角的平面角的求解方法,进而推出 ATC1 就是二面角 A-B1D1-C1 的平面角,再利用等腰三角形的结构特征结合余弦定理,再结合几何法得出当 x+

    22、y 最大时的二面角 A-B1D1-C1 的余弦值。二、多选题9.已知复数 z 满足 (1-i)z=2i ( i 是虚数单位),则下列关于复数 z 的结论正确的是( ) A.|z|=2B.复数 z 的共轭复数为 z=-1-iC.复平面内表示复数 z 的点位于第三象限D.复数 z 是方程 x2+2x+2=0 的一个根【答案】 A,B,D 【考点】复数相等的充要条件,复数的代数表示法及其几何意义,复数代数形式的乘除运算,复数求模 【解析】【解答】解:由 (1-i)z=2i ,得 z=2i1-i=2i(1+i)(1-i)(1+i)=-2+2i1-i2=-2+2i2=-1+i |z|=(-1)2+12=

    23、2 ,A符合题意;z=-1-i ,B符合题意;平面内表示复数 z 的点的坐标为 (-1,1) ,位于第二象限,C不符合题意;(-1+i)2+2(-1+i)+2=-2i-2+2i+2=0 , 复数 z 是方程 x2+2x+2=0 的一个根,D符合题意故答案为:ABD 【分析】利用已知条件结合复数的乘除法运算法则,进而求出复数z,再利用复数求模公式,进而求出复数的模;利用已知条件结合复数与共轭复数的关系,进而求出复数z的共轭复数;利用已知条件结合复数的几何意义,从而求出复数z对应的点的坐标,再利用点的坐标确定点所在的象限;利用复数z是方程的根结合代入法和复数相等的等价关系,进而求出复数 z 是方程

    24、 x2+2x+2=0 的一个根,从而找出结论正确的选项。10.已知 ABC 的内角 A,B,C 所对边的长分别为 a,b,c , A=4 , a=m , b=4 ,若满足条件的 ABC 有两个,则 m 的值可以是( ) A.22B.23C.3D.4【答案】 B,C 【考点】余弦定理 【解析】【解答】在 ABC 中,由余弦定理 a2=b2+c2-2bccosA 得: m2=42+c2-24ccos4 , 即 c2-42c+16-m2=0 ,依题意,关于c的一元二次方程有两个不等的正根,所以 =(42)2-4(16-m2)=4m2-320m28 ,并且 16-m20m20,则 22m4 ,取 m=

    25、23 或 m=3 ,B,C符合条件.故答案为:BC 【分析】利用已知条件结合余弦定理得出 c2-42c+16-m2=0 ,依题意,关于c的一元二次方程有两个不等的正根,再利用判别式法结合根与系数的关系,进而求出实数m的取值范围,进而求出m可以的取值。11.在疫情防护知识竞赛中,对某校的 2000 名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为 40,50) , 50,60) , 60,70) , 70,80) , 80,90) , 90,100 , 60 分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( ) A.成绩在 70,80)

    26、的考生人数最多B.不及格的考生人数为500C.考生竞赛成绩的众数为75分D.考生竞赛成绩的中位数约为75分【答案】 A,C 【考点】频率分布直方图,众数、中位数、平均数,随机抽样和样本估计总体的实际应用 【解析】【解答】对于A,成绩在 70,80) 的矩形最高,则对应的频率最大, 成绩分布在此的考生人数最多,A符合题意;对于B,成绩在 40,60) 的频率为 (0.005+0.015)10=0.2 , 不及格的人数为 20000.2=400 人,B不符合题意;对于C,成绩在 70,80) 的矩形最高,对应的频率最大, 众数为 75 分,C符合题意;对于D,成绩在 40,70) 的频率和为 (0

    27、.005+0.015+0.020)10=0.4 ,设中位数为 x ,则 0.4+(x-70)0.03=0.5 ,解得: x=731373.33 , 中位数约为73分,D不符合题意.故答案为:AC. 【分析】利用已知条件结合频率分布直方图中各小组的矩形的面积等于各小组的频率,再利用频数等于频率乘以样本容量,从而求出成绩在 70,80) 的考生人数最多和不及格的考生人数。再利用频率分布直方图求众数和中位数的方法,进而估计出考生竞赛成绩的众数和中位数,从而找出说法正确的选项。12.正方体 ABCD-A1B1C1D1 中,E是棱 DD1 的中点,F在侧面 CDD1C1 上运动,且满足 B1F/ 平面

    28、A1BE .以下命题正确的有( ) A.侧面 CDD1C1 上存在点F , 使得 B1FCD1B.直线 B1F 与直线 BC 所成角可能为 30C.平面 A1BE 与平面 CDD1C1 所成锐二面角的正切值为 22D.设正方体棱长为1,则过点E , F , A的平面截正方体所得的截面面积最大为 52【答案】 A,C 【考点】棱柱的结构特征,异面直线及其所成的角,空间中直线与直线之间的位置关系,二面角的平面角及求法 【解析】【解答】取 C1D1 中点M , CC1 中点N , 连接 B1M,B1N,MN ,则易证得 B1N/A1E , MN/A1B ,从而平面 B1MN/ 平面 A1BE ,所以

    29、点F的运动轨迹为线段 MN 取 MN 的中点F , 因为 B1MN 是等腰三角形,所以 B1FMN ,又因为 MN/CD1 ,所以 B1FCD1 ,A符合题意;设正方体的棱长为a , 当点F与点M或点N重合时,直线 B1F 与直线 BC 所成角最大,此时 tanC1B1F= 120 sinA=2sinAcosC ,cosC=12 ,0C0 ,tanC=3 ,0C ,C=3 ;若选, (a+b+c)(a+b-c)=3ab ,(a+b)2-c2=3ab ,即 a2+b2-c2=ab , 由余弦定理可得 cosC=a2+b2-c22ab=ab2ab=12 ,0C ,C=3 ;(2)因为 C=3 , c=2 , ABC 的面积为 34 SABC=12absinC=34ab=34 ,ab=1 ,又由余弦定理有 a2+b2-4=ab ,即 (a+b)2=3ab+4=7 ,所以 a+b=7 , a+b+c=2+7 所以 ABC 的周长为 2+7 .【考点】两角和与差的正弦公式,正弦定理,余弦定理,三角形中的几何计算 【解析】【分析】(1) 若选,利用已知条件结合正弦定理和两角和的正弦公式,再结合三角形中内角和为180度的性质结

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省梅州市2020-2021学年高一下学期期末考试数学试卷(含答案).docx
    链接地址:https://www.163wenku.com/p-2989970.html
    大布丁
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库