判别分析的SPSS实现课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《判别分析的SPSS实现课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 判别分析 SPSS 实现 课件
- 资源描述:
-
1、SPSS提供的建立判别函数的方法有:1.全模型法:把所有的变量放入判别函数中2.逐步判别法判别分析的步骤判别分析的步骤对于分为m类的研究对象,建立m个线性判别函数,对测试的样本代入判别函数,得出判别得分,从而确定该样本属于哪一类。Discriminant Discriminant对话框 Grouping Variable:已知的观测量所属类别的变量(分类变量)Independents:观测量,即参与判别分析的变量。Use Stepwise method :当不认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。因此根据对判别贡献的大小进行选择。Enter independent to
2、gether :当所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。选择该项将不加选择地使用所有自变量进行判别分析,建立全模型。不需要进一步进行选择。 选择分类变量及其范围选择分类变量及其范围 在主对话框中左面的矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量,按上面一个箭头按钮,使该变量名移到箭头按钮右面,“Grouping Variable”下面的矩形框此时矩形框下面的“Define range”按钮加亮,按该按钮,屏幕显示一个小对话框,供指定该分类变量的数值范围。定义分类变量范围的小对话框如下图 所示。 在Minimum:后面的矩形框中输入该分类变量的最小值;在Muxi
3、murn:后面的矩形框中输入该分类变量的最大值。 分类变量范围对话框 指定判别分析的自变量指定判别分析的自变量 在主对话框的左面的变量表中选择表明观测量特征的变量,按下面一个箭头按钮,把选中的变量移到“Independents:”下面的矩形框中,作为参与判别分析的变量。 Indepents对话框数据变量数据变量输入框输入框数据判别分析数据判别分析 完成前面四步骤的操作即可使用各种系统默认值对工作数据集的数据进行判别分析了。可以使用的方法有两种: (1)直接运行:在主对话框中按(用鼠标单击)Ok按钮 (2)生成SPSS命令程序后再运行:在主对话框中按Paste按钮,激活Syntax窗,在该窗中按
4、Run按钮执行该语句窗中的程序。 无论哪种方法均可在output窗中显示出分析结果。 完全使用系统默认值进行判别分析,其结果有时不能令人满意,因此根据以下步骤指定选择项是很有必要的。 选择观测量选择观测量 如果希望使用一部分观测量进行判别函数的推导,而且有一个变量的某个值可以作为某些观测量的标识,则用Select功能进行选择。操作方法是,单击“Select”按钮展开小选择框,在“Vaiable:”后面矩形框中输入该变量的变量名,在“Value:”后面输入标识参与分析的观测量所具有的该变量值。一般均使用数据文件中的所有合法观测量。此步骤可以省略。 Select功能选择选择分析方法选择分析方法 在
5、主对话框中自变量矩形框下面有两个选择项,被选中的方法前面的圆圈中加有黑点。这两个选择项是选择判别分析方法的。(1)Enter independent together 当你认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。选择该项将不加选择地使用所有自变量进行判别分析,建立全模型。不需要进一步进行选择。 (2)Use Stepwise method 当你不认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。因此根据对判别贡献的大小进行选择。当鼠标单击该项时,Method按钮加亮。可以进一步判别分析方法。 单击“Method”按钮,展开“Stepwise method”对话
6、框(子对话框)如下图所示。 Stepwise method对话框 选择进行逐步判别分析的方法 选择判别分析方法在Method组的矩形框中进行。可供选择的判别分析方法有: Wilkslambda 使Wilk的统计量最小化法。Unexplained variance 使各类不可解释的方差和最小化法。Mahalanobisdistance 使最近两类间的 Mahalanobis距离最大化法。 Smallest F ratio。使任何两类间的最小的F值最大化法。 Rao V 使 RaoV统计量最大化。可以对一个要加入到模型中的变量的V值指定一个最小增量。选择此种方法后,应该在该项下面的V to dnt
7、ce后的矩形框中输这个增量的指定值。 选择逐步判别停止的判据选择逐步判别停止的判据 选择逐步判别停止的判据在criteria组的矩形框中进行。可供选择的判据有: Use F value:使用F值,是系统默认的判据,默认值是:Entry:3.84;removal:2.71。即当被加入的变量F值=3.84时才把该变量加入到模型中,否则变量不能进入模型;或者,当要从模型中移出的变量F值=2.71时,该变量才被移出模型,否则模型中的变量不会被移出。应该使Entry值(加入变量的F值)removal值(移出变量的F值) Use probability of F:使用F值的概率。加入变量的F值概率的默认值
8、是0.05(5);移出变量的q值概率是0.10(10)。removal值(移出变量的正值概率)Entry值(加入变量的F值概率)。 显示内容的选择 对于逐步选择变量的过程和最后结果的显示可以通过Method对话框最下面的Display矩形框中的三项进行选择: Resul at each step要求在逐步选择变量过程中的每一步之后显示每个变量的统计量。 Summary仅要求显示加入或移出模型的变量的综计量。即选择变量的小结。 F for Pairwise distances要求显示两两类之间的两两 F值矩阵。 当以上三项都给予了确定的选择后,单击continue按钮,返回主对话框。 指定输出的
9、统计量指定输出的统计量单击“statistics”按钮,展开相应的子对话框,如下图所示。可以选择的输出统计量分为以下三类:(1 1)描述统计量)描述统计量 在Descriptives组的矩形框中可以选择对原始数据的描述统计量的输出: Means选择此项可以输出各类中各自变量的均值MEAN、标准差Std Dev和各自变量总样本的均值和标准差。 Univariate ANOVA对各类中同一自变量均值都相等的假设进行检验,输出单变量的方差分析结果。 Boxs M对每类的协方差矩阵是从同一总体中采样得来的假设进行检验,输出检验结果。 Statistics(2)判别函数系数 在Fuction coeff
10、icients组的矩形框中选择判别函数系数的输出形式: Fishers可以直接用于对新样本进行判别分类的费雪系数。 Unstandardized未经标准化处理的判别系数。可用于计算判别分数。 (3 3)自变量的系数矩阵)自变量的系数矩阵 在Matrices组的矩形框中选择要求给出的矩阵: within-groups correlation matrix类内相关矩阵 within-groups covariance matrix类内协方差矩阵 Separate-groups covariance matrices对每类输出一个类间协方差矩阵 Total covariance matrix总样本的
11、协方差矩阵 以上三项都给予了确定的选择后,单击continue按钮,返回主对话框。 指定分类参数和判别结果指定分类参数和判别结果 在主对话框中单击“classify”按钮,展开相应的子对话框,如下图所示。 (1 1)在)在Prior ProbabilitiesPrior Probabilities组的矩形框中选择先验概率,组的矩形框中选择先验概率,两者选其一两者选其一。 All groups equal各类先验概率相等。若分为m类,则各类先验概率均为1m。 computer from group sizes由各类的样本量计算决定在各类的先验概率与其样本比。 Classifiction对话框(2
12、)选择分类使用的协方差矩阵 在Use covariance Matrix组的矩形框中选择分析使用的协方差矩阵。两者选其一。 Within-groups指定使用组内协方差矩阵。 Seperate-groups指定使用组间协方差矩阵。 (3 3)选择要求输出的统计图)选择要求输出的统计图 在Plots组的矩形框中选择,可以并列选择。 combined-groups 所有类放在一张散点图中。便于比较。此选择项生成一张散点图。 Seperate-groups对每一类生成一张散点图。共分为几类就生成几张散点图。 Territoreal map 如果对一个观测量只能计算出一个判别分数,则利用观测量的判别做
13、作图,如果有两个以上判别分数,则用头两个判别分数作图。此种统计图力图把一张图的平面划分出与类数相同的区域。每一类占据一个区。 (4 4)选择生成到输出窗中的分类结果)选择生成到输出窗中的分类结果 在在 DisplsyDisplsy组的组的矩形框中选择输出项:矩形框中选择输出项: Results for each case要求输出每个观测量的分类结果。 Summary table要求输出分类的小结,给出错分率。(5 5)缺失值处理方式)缺失值处理方式 在classification子对话框的最下面有一个选择项,用以选择对缺失值的处理方法。 Replace missing value with m
14、ean用该变量的均值代替缺失值。该选择项前面的小矩形框中出现x时表示选定所示的处理方法。 以上五项都给予了确定的选择后,单击continue按钮,返回主对话框。 指定生成并保存在数据文件中的新变量指定生成并保存在数据文件中的新变量 Descriminant过程可以在数据文件中建立新变量,通过Save New Vaiables子对话框进行选择。 在主对话框中单击“Save”按钮,展开“Save New Vaiables”子对话框。如下图所示。 Save对话框 在工作数据文件中建立以下三个新变量,可以选择。 Predicted group membership要求建立一个新变量,表明预测的类成员。
15、指定此项后,每行一次Descriminant过程,就建立一个表明使用判别函数预测的各观测量属于哪一类的新变量。第一次运行建立新变量的变量名为dis-1,如果在工作数据文件中不把前一次建立的新变删除,第n次运行Descriminant过程建立的新变量默认的变量名为dis-n。 Descriminant score要求建立表明判别分数的新变量。每次运行 Descriminant过程都给出组表明判别分数的新变量。建立几个典则判别函数就有几个判别分数变量。参与分析的观测量共分为m类,则建立ml个典则判别函数,指定该选择项,就可以生成ml个表明判别数的新变量。例如,原始数据观测量共分为3类,建立两个典则
16、判别函数。第一次运行判别过程建立的新变量名为dis1_1,dis2_1,第二次运行判别过程建立的新变量名为dis1_2,dis2_2依此类推。分别表示代入第一和第二个判别函数所得到的判别分数。 Probabilities of group membership要求建立新变量表明观测量属于某一类的概率。有m类,对一个观测量就会给出m个概率值,因此建立m个新变量。例如,原始和预测分类数是:指定该选择项,在第一次运行判别过 程 后 , 给 出 的 表 明 分 类 概 率 的 新 变 量 名 为dis1_2,dis2_2,dis3_2. 选择了新变量类型后,按continue运行带有选择项的判别分析过
17、程运行带有选择项的判别分析过程 运行Descriminant过程有两种方法: (1)在主对话框中按Ok按钮,直接运行Descriminant过程。 (2)在主对话框中按Paste按钮,将以上操作结果转换成Descriminant过程的命令程序,显示在Syntax窗中。 在Syntax窗中可以按照Descriminant命令语句格式进一步修改粘贴则窗中的各子命令语句。然后按Run按钮,将窗中的程序语句提交给系统执行。 逐步判别分析逐步判别分析 (1 1)逐步判别分析方法与判据的选择)逐步判别分析方法与判据的选择 逐步判别在操作步骤方面只有在选择方法一点上与前面所叙述的方法有所区别,即在Discr
18、iminant过程主对话框中应该选择Use stepwise method。当单击该选择项时,其前面的圆圈中出现黑点,同时Method按钮加亮表示可以进一步选择分析方法或判据了。 单击Method按钮,展开stepwise method对话框。在对话框中显示出系统默认的逐步区别方法是Milks Lambra。其判据是:进入模型的F值为3.84;从模型中剔除变量的F值为2.71。不熟悉统计分析的用户可以不再进一步选择,直接使用系统默认的分析方法和判据. 逐步判别方法的选择逐步判别方法的选择Milks Lambra使Milks统计量最小。是系统默认的方法。Unexplained variance使
展开阅读全文