第四章-平面问题的有限单元法.课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第四章-平面问题的有限单元法.课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 平面 问题 有限 单元 课件
- 资源描述:
-
1、弹性力学的平面应力问题 基本条件基本条件 (1 1)等厚度的)等厚度的薄板薄板; (2 2)体力体力作用于体内,平行于板的中面,沿板厚不变;作用于体内,平行于板的中面,沿板厚不变; (3 3)面力面力作用于板边,平行于板的中面,沿板厚不变;作用于板边,平行于板的中面,沿板厚不变; (4 4)约束约束作用于板边,平行于板的中面,沿板厚不变。作用于板边,平行于板的中面,沿板厚不变。弹性力学的平面应力问题坐标系:坐标系:由于两板面上无面力和由于两板面上无面力和约束作用:约束作用:0,2zzyzxz由于薄板很薄,应力是连续变化的,又无由于薄板很薄,应力是连续变化的,又无z z向外力,可认为:向外力,可
2、认为:(在V中) , 0,zyzxz简化为平面应力问题,仅剩:简化为平面应力问题,仅剩:xyyx, ,其值与其值与z z无关无关弹性力学的平面应变问题基本条件基本条件(1 1)很长的)很长的常截面柱常截面柱;(2 2)体力体力作用于体内,平行于横截面,沿柱体长度方向不变;作用于体内,平行于横截面,沿柱体长度方向不变;(3 3)面力面力作用于柱面,平行于横截面,沿柱体长度方向不变;作用于柱面,平行于横截面,沿柱体长度方向不变;(4 4)约束约束作用于柱面,平行于横截面,沿柱体长度方向不变。作用于柱面,平行于横截面,沿柱体长度方向不变。弹性力学的平面应变问题坐标系:坐标系: 由于由于截面、外力、约
3、截面、外力、约束沿束沿z z 向不变,外力、向不变,外力、约束平行约束平行xyxy面,柱体面,柱体非常长非常长:故任何故任何z z 面面(截面)均为对称面。(截面)均为对称面。简化为平面应变问题:简化为平面应变问题:其值与其值与z z无关无关oxzyozxy(平面位移问题)只有 ; , 0u,vw(平面应变问题)只有 ., , 0,0, 00 xyyxzyzxzyzxzw平面应力单元类型平面应力单元类型简介平面应力单元类型简介3 3节点三角形单元节点三角形单元4 4节点节点4 4边形单元边形单元8 8节点节点4 4边形曲边单元边形曲边单元节点位移分量节点位移分量每节点每节点2 2个位移分量(自
4、由度)个位移分量(自由度)x x方向的位移方向的位移u u,y y方向的位移方向的位移v v单元位移分量(单元位移分量(4 4节点)节点)jik三角形单元三角形单元单元单元ekijl单元单元e四边形单元四边形单元123456788节点单元节点单元单元单元e Tllkkjjiievuvuvuvu平面应力单元网格划分应力梯度变化比较大的地方,网格应密一些应力梯度变化比较大的地方,网格应密一些有应力集中的地方,网格应密一些有应力集中的地方,网格应密一些单元边界长度不要相差过大单元边界长度不要相差过大单元各边夹角不要太大单元各边夹角不要太大集中载荷处要设置节点集中载荷处要设置节点结构不同材料交界面处要
5、设置节点并作为单元边界结构不同材料交界面处要设置节点并作为单元边界结构厚度突变处要设置节点并作为单元边界结构厚度突变处要设置节点并作为单元边界分布载荷突变处要设置节点分布载荷突变处要设置节点施加位移约束处要设置节点施加位移约束处要设置节点注意单元间的连接注意单元间的连接平面应力单元网格划分设置节点设置节点设置节点设置节点材料材料A材料材料B界面界面这样不行这样不行病态单元病态单元a-边长差别太大边长差别太大b-边长差别太大边长差别太大c-边夹角太大边夹角太大 abc单元节点信息节点信息节点信息节点号xyz100021003200421051106010700.50810.50920.50单元拓
6、扑信息单元拓扑信息单元号节点i节点j节点k节点l材料编号其它常数112871278561358941439881582331单元位移函数(位移模式)单元位移模式概念单元位移模式概念单元内任一点的位移要用节点上的位移值近似表达出来,这单元内任一点的位移要用节点上的位移值近似表达出来,这就需要假定一个近似函数来表示单元内的位移分布,所选择就需要假定一个近似函数来表示单元内的位移分布,所选择的近似函数就称为单元位移函数或单元位移模式。的近似函数就称为单元位移函数或单元位移模式。对于弹性力学平面问题,一般选择多项式对于弹性力学平面问题,一般选择多项式 ( polynomial ) ( polynomi
7、al ) 来作为单元内的位移解或插值函数或位移模式。来作为单元内的位移解或插值函数或位移模式。342321)(xxxxunmyyxyxyxyxu26524321),(nmyyxyxyxyxv26524321),(三角单元的位移函数节点上只有六个位移分量,所以节点上只有六个位移分量,所以单元内部位移函数的待定参数不单元内部位移函数的待定参数不能超过这个数目。可假设单元内能超过这个数目。可假设单元内部位移为部位移为x x、y y的线性函数:的线性函数:参数参数ai由位移边界条件确定。由位移边界条件确定。三角单元的位移函数节点节点i i节点节点j j节点节点k k于是:于是:jjjjjjjjjjya
8、xaavyxvyaxaauyxu654321),(),(kkkkkkkkkkyaxaavyxvyaxaauyxu654321),(),(iiiiiyaxaavyxv654),(iiiiiyaxaauyxu321),(三角单元的位移函数如果令如果令则:则:根据线性代数的知识,可知:根据线性代数的知识,可知:三角单元的位移函数T T* *为为T T的伴随矩阵的伴随矩阵其中:其中:三角单元的位移函数把求得的系数把求得的系数代入位移函数公式:代入位移函数公式:得到:得到:kkkkjjjjiiiiuyxuyxuyxyxu1),(kkjjiiuNuNuN31iiiuN三角单元的位移函数表达为矩阵形式:表达
展开阅读全文