中小学作业设计大赛获奖优秀作品-《义务教育语文课程标准(2022年版)》-[信息技术2.0微能力]:中学九年级数学上(第六单元).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中小学作业设计大赛获奖优秀作品-《义务教育语文课程标准(2022年版)》-[信息技术2.0微能力]:中学九年级数学上(第六单元).docx》由用户(天方乘风)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 义务教育语文课程标准2022年版 信息技术2.0微能力 中小学 作业 设计 大赛 获奖 优秀作品 义务教育 语文课程 标准 2022 年版 信息技术 2.0 能力 中学 九年级 数学 第六 单元 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、中学九年级数学上(第六单元)义务教育语文课程标准(2022年版)微能力2.0认证-中小学作业设计大赛目 录作业设计方案撰写:TFCF优秀获奖作品56九年级数学第一学期第六单元作业设计一、单元信息基本信息学科年级学期教材版本单元名称数学九年级第一学期北师大反比例函数单元组织方式R自然单元 重组单元课时信息序 号课时名称对应教材内容1反比例函数1(P149-P151)2反比例函数的图像2(P152-P154)3反比例函数的性质2(P154-P157)4反比例函数的应用3(P158-P160)二、单元分析(一)课标要求1、经历从具体问题情境中抽象出反比例函数概念的过程,进一步感受函数的模型思想;探索
2、反比例函数的性质,体会研究函数的一般性方法.2、结合具体情境体会反比例函数的意义,理解反比例函数的概念,能根据已知条件确定反比例函数的表达式.3、能画出反比例函数的图像,根据图象和表达式理解反比例函数的性质,体会数形结合的思想和分类的思想.4、能用反比例函数解决简单的实际问题,发展应用意识.在反比例函数学习的过程中,进一步发展用于探究与合作交流的精神.(二)教材分析1、知识网络2、内容分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.本章的反比例函数是重要的函数模型之一,仍然遵循函数研究规律,在七年级下册“变量之间的关系”和八年级上
3、册“一次函数”的基础上,通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念,通过例题和列举实例丰富对反比例函数的认识,理解反比例函数的意义.经历列表、描点、连线等活动,理解函数的三种表示,认识反比例函数的图象,为探索反比例函数的性质提供了思维活动空间,同时在交流研讨的过程中发展从图象中获取信息和抽象概括的能力.本章最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用.从实际中来回到实践中去,体现了数学的应用价值,并且在这些数学活动中,加深了对反比例函数以及函数的认识,并突出了知识间的内在联系,体会特殊到一般的数学思想.除此之外,反比例函数作为重要的函数模型之
4、一,对于高中进一步研究函数(如定义域,值域,单调性,奇偶性,幂函数)有着重要的价值.(三)学情分析学生已经学习了函数及一次函数,对于函数的学习方法已具备初步经验,所以类比一次函数学习反比例函数的概念比较轻松。但是,虽然学生已初步掌握描点法画函数图像的方法,由于反比例函数的图像结构复杂,具有自身的特殊性, 因此,在画反比例函数的图像,这个环节可能遇到以下问题:1、在列表时,没注意到自变量的取值范围是x 不等于零,或者对自变量x 的取值只取正或只取负; 2、由于列表时只取了有限的几个点,因此,在连线时学生容易只把这几点连线只画出图像的一部分,有明显端点,没有画出双曲线的延伸趋势。3、学生在画双曲线
5、的延伸趋势时可能出现错误,这是因为学生仅仅是通过描点得出图像,并没有深入从解析式的角度分析问题。针对上述可能存在的问题,教师可以引导学生尝试分析理解。而在学习一次函数的时候,学生已经经历过观察、分析图像的特征,概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解, 故通过类比,结合反比例函数的图像和表达式探索性质,基本不会存在障碍。可是由于双曲线的特殊性,使学生在探究反比例函数增减性时可能会出现问题,因而教学中,教师应该强调从“数”与“形”两方面统一分析。最后,学生已在方程(组),不等式(组),函数,一次函数等知识的学习中,逐步形成了应用意识, 归纳了解决问题的步骤,所以对于反比例函
6、数,学生足够具备应用意识。三、单元学习与作业目标1、探索简单实例中的数量关系和变化规律,了解常量、变量的意义,从具体情境中抽象出反比例函数的概念,能举出反比例函数的实例.感受由特殊到一般的数学思想和类比的学习方法.2、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.3、了解函数的三种表示法,能画出反比例函数的图象,根据图象和表达式探索并理解 k0 和 k 0) .x第 2 题探寻生活中、其它学科中、数学已学知识中反比例函数的实例,并和同学们讨论交流.评价实施主体:学生自评 学生互评小组评议教师评价 其他评价标准:能否探寻生活中、其它学科中、数学已学知识中反比例函数的实例
7、,能否建立反比例函数模型,能否和同学讨论交流,能否解决问题.设计意图:将反比例函数推广到数学已有知识,其它学科和生活中,将知识延伸课外,同时体会数学应用价值, 提高数学应用能力.作业分析:题 2 具有开放性,不同层次的学生,收获各有不同,避免了刻意设置拔尖训练给基础薄弱的学生造成心灵伤害.(课时作业 2)单元内容反比例函数课题反比例函数的图象与性质节次第 1 课时题型口述、选择、填空、解答、讨论题量8作业时长导学作业 20 分钟,基础作业 8分钟,能力提升作业 15分钟,思维拓展作业 5分钟,合计 48分钟钟作业功能(可多选)课前预习课中练习课后复习课后实践作业类型(可多选)分层作业弹性作业个
8、性化作业探究性作业实践性作业跨学科综合性作业导学作业作业内容评价标准与设计意图1、还记得画一次函数图象的步骤吗?2、请类比画一次函数的步骤尝试画反y = 4y = - 4比例函数x 与x 的图象.3、通过观察图象,你能知道反比例函数的图象是什么形状吗?它们怎么分布的?与 k 有怎样的关系?评价实施主体:学生自评 学生互评 小组评议教师评价 其他评价标准:是否明确画图步骤,画图是否准确规范,是否能独立完成预习,表达是否准确清晰设计意图:引导学生学会用类比作一次函数图象的方法预习和自学新知,巩固学习方法的同时提升自学能力,并加深了函数的三种表示方法的理解.基础过关作业内容评价标准与设计意图第 1
9、题6反比例函数 y= x 的图象是() A线段B直线C 抛 物 线D双曲线评价实施主体:学生自评 学生互评 小组评议教师评价 其他评价标准:能否正确选择答案设计意图:单刀直入强化反比例函数图象的形状是双曲线;作业分析:反比例函数 y = k (k 0) 的图x象是双曲线,故选 D.第 2 题2已知反比例函数 y = (m + 1)xm -5 的图象在第二、四象限内,则m= .评价实施主体:学生自评 学生互评 小组评议教师评价 其他评价标准:能否正确填空,能否通过m2-5=-1 求得 m=2 或-2,能否注意到 m+10,能否明确 k0 和 k0 时反比例函数图象分布在不同象限设计意图:题 2
10、选择了上节能力提升的题 1 进一步探究,加深学生对反比例函数图象分布的印象,明确 k0 和 k0 反比例函数图象分布在不同象限,也为下节讨论增减性埋下伏笔;作业分析:根据反比例函数的定义即y = k (k 0) ,解题的关键是将一般式xy = k (k 0) 转化为 y = kx-1(k 0) 的形x式,故只需令 m2-5=-1 即可得 m=2 或-2, 又因为图象在第二、四象限内,所以m+1 0C k1+k20Dk1+k20评价实施主体:学生自评 学生互评 小组评议教师评价 其他评价标准:能否明确 k0 和 k0 反比例函数图象分布在不同象限,能否明确k0 和 k0 一次函数图象的分布,能否
11、将二者类比和比较,能否综合应用二者得出正确选项设计意图:题 3 仍然是 k0 和 k0 反比例函数图象分布问题,还涉及了一次函数图象,类比学习和记忆的同时,提高知识综合应用能力;作业分析:根据反比例函数与一次函数的性质,正比例函数y=k1x 的图象与反比例函数 y = k2 的图象没有公共点,k 与x1k2 异号,即 k1k20故选 A评价实施主体:学生自评 学生互评第 4 题 小组评议教师评价 其他如图,在直角坐标系中,正方形的中心评价标准:能否认识反比例函数图象上在原点O ,且正方形的一组对边与x 轴点的特征,能否利用图像上点的特征和平行,点P(4a, a)是反比例函数割补法求面积,能否建
12、立等量关系求 k值.y = k (k 0) 的图象上与正方形的一个x设计意图:题 4 是为了让学生体会反比例函数图象上点的特征,并用它解决求交点,若图中阴影部分的面积等于16 ,面积的小问题,旨在让学生认识到简单则k 的值为( )的基础知识的大作用,提醒学生注重基础知识的巩固和训练.A16B1C4D-16作业分析:利用割补法可知一个小正方形边长为 4,所以 a=1,所以 k=4.能力提升第 1 题评价实施主体:学生自评 学生互评 小组评议教师评价 其他评价标准:是否具备分类讨论的思想, 是否能够分 k0 和 k0 两种情况,分y = k (k 0)别判断反比例函数x的图象所在象限及一次函数 y
13、=kx-1 的图象经过的象限,能否正确判断选项设计意图:能力提升题 1 复习一次函数的图象巩固反比例函数的图象及分类的数学思想方法;作业分析:分 k0 和 k0 两种情况,分别判断反比例函数 y = k (k 0) 的图象x所在象限及一次函数 y=kx-1 的图象经过的象限再对照四个选项即可得出结论 B如图,在同一平面直角坐标系中,反比y = k例函数x 与一次函数 y=kx1(k 为常数,且 k0)的图象可能是()A. B. C. D. 第 2 题在 平 面 直 角 坐 标 系 中 , 点y = k1M (m, n ) (m 0, n y2 时,x的取值范围是()设计意图:;题 3 是数形结
14、合思想的渗Ax-2 或 x2透,“形是数之貌,数是形之髓”,以形Bx-2 或 0x2助数,以数解形.如果说基础过关是对本C-2x0 或 0x2课时知识点的巩固和训练,则能力提升D-2x0 或 x2更侧重数学思想方法的体会和综合应用能力的提升.作业分析:本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出 y1y2 时 x 的取值范围是解答此题的关键先根据反比例函数与正比例函数的性质求出 B 点坐标,再由函数图象即可得出结论 D思维拓展表示关系式 | y |= 1 , y = 1 , x| x |y = - 1, | y |= 1的 图 象 依 次| x | x |是 、 、 、 .评
展开阅读全文
链接地址:https://www.163wenku.com/p-2981317.html