锅炉压力容器应力分析课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《锅炉压力容器应力分析课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锅炉 压力容器 应力 分析 课件
- 资源描述:
-
1、锅炉锅炉压力容器应力分析压力容器应力分析 第1节 受内压薄壁壳体的应力分析 第2节 受内压厚壁壳体的应力分析 第3节 平板的应力分析 第4节 薄壁壳体边缘应力分析 第5节 开孔的安全性 第6节 热应力 第第1 1节节 受内压薄壁壳体的受内压薄壁壳体的应力分析应力分析 几个概念 构件变形的基本形式:拉伸与压缩、剪切、扭转、弯曲。 外力: 内力:构件内某一部分与相邻部分之间相互的力,作用在一个截面上的力,力系。 应力:内力在截面上各点的分布情况,单位截面上作用的内力来衡量。 P=dF/dA; 法向应力; 剪应力; 胡克定律:材料力学实验表明,当应力不超过某一限度时,应力与应变成正比关系。 =E;
2、E材料的弹性模量,线应变=du/dx; 泊桑比:当构件受到拉伸或压缩时,其横向也发生收缩或胀大,其横向应变也与应力成正比。构件横向应变与纵向应变的比例称为泊桑比。即: 即横向应变 几个概念yx与关系Exxy 广义胡克定律: 几个概念32111E13221E21331E1()1()1()xxyzyyzxzzxyEEE 一、无力矩理论及基本方程一、无力矩理论及基本方程 壳体与回转壳体p 壳体:锅炉压力容器的主要承压结构。是两个近距离同形曲面围成的结构,两曲面间的垂直距离为厚度。 中面平分壳体厚度的曲面叫壳体的中面。p 回转壳体:中面为回转的壳体; 壳体与回转壳体p 回转壳体: 壳体与回转壳体p 回
3、转壳体: 母线:母线:ABAB 经线:经线:ABAB,如果通过回转,如果通过回转轴作一纵截面与壳体曲面相轴作一纵截面与壳体曲面相交所得的交线,与母线的形交所得的交线,与母线的形状相同;状相同; 中间面:中间面:与壳体与壳体内外表面内外表面等等距离的中曲面;距离的中曲面; 法线:法线:n n,通过经线上任意,通过经线上任意一点一点M M垂直于中间面的直线垂直于中间面的直线,其延长线必与回转轴相交。其延长线必与回转轴相交。过过M M点可作无数平面,每一平面与回转曲面相交均有点可作无数平面,每一平面与回转曲面相交均有交线,每条交线都在交线,每条交线都在M M点有不同的曲率半径,但我们只关点有不同的曲
4、率半径,但我们只关心下面三个:心下面三个: 过过M M点与回转轴作一平面,即点与回转轴作一平面,即MAOMAO平面,称平面,称为为经线平面经线平面。在经线平面上,经线。在经线平面上,经线ABAB上上M M点的曲率半径称为点的曲率半径称为第一曲率半径第一曲率半径, 用用 表示表示 ; 过过M M点作一与点作一与回转轴垂直的平面回转轴垂直的平面,该平面,该平面与回转轴的交线是一个圆,称为回转曲面与回转轴的交线是一个圆,称为回转曲面的平行圆,也称为的平行圆,也称为纬线纬线,此平行圆的圆心,此平行圆的圆心一定在回转轴上;一定在回转轴上; 过过M M点再作一与点再作一与经线经线ABAB在在M M点处切线
5、相垂直点处切线相垂直的平面的平面,该平面与回转曲面相交又得一曲,该平面与回转曲面相交又得一曲线,线,这一曲线在这一曲线在M M点的曲率半径称为第二点的曲率半径称为第二曲率半径曲率半径,用,用 表示;表示; 壳体与回转壳体 若自若自K2K2点向回转曲面作一个与回转曲面正交的圆锥点向回转曲面作一个与回转曲面正交的圆锥面,则该圆锥面与回转曲面的交线也是一个圆面,则该圆锥面与回转曲面的交线也是一个圆纬线纬线; 就普通回转体而言,用与轴线垂直的平面截取得到就普通回转体而言,用与轴线垂直的平面截取得到的壳体截面与用上述圆锥面截取得到的壳体截面是的壳体截面与用上述圆锥面截取得到的壳体截面是不一样的,前者是壳
6、体的横截面,并不能截出壳体不一样的,前者是壳体的横截面,并不能截出壳体的真正厚度的真正厚度( (圆柱形壳体除外圆柱形壳体除外) ),而后者称为壳体的,而后者称为壳体的锥截面,锥截面,截出的是回转体的真正壁厚截出的是回转体的真正壁厚; 第一曲率半径第一曲率半径 的简单求法:的简单求法:经线的曲率半径经线的曲率半径 第二曲率半径第二曲率半径 的简单求法:的简单求法:经线到回转轴的距离经线到回转轴的距离。ab =a? 还是还是=b? =a 壳体与回转壳体 壳体与回转壳体p 薄壁回转壳体:简称回转薄壳,当壳体外径/内径(K)1.2时。p 厚壁回转壳体:当壳体外径/内径(K) 1.2时。 薄壁壳体的基本
7、假设 小位移假设:壳体受力以后,各点的位移远小于小位移假设:壳体受力以后,各点的位移远小于壁厚,变形分析时可以忽略高阶微量;壁厚,变形分析时可以忽略高阶微量; 直线法假设:壳体变形前后直线关系保持不变直线法假设:壳体变形前后直线关系保持不变(垂直于中间面直线),(垂直于中间面直线),变形后厚度保持不变变形后厚度保持不变; 不挤压假设:壳体各层纤维变形前后均互不挤压,不挤压假设:壳体各层纤维变形前后均互不挤压,变形后法向应力和其它方向应力相比是可以忽略变形后法向应力和其它方向应力相比是可以忽略的,使得薄壁壳体的应力分析变为平面应力分析。的,使得薄壁壳体的应力分析变为平面应力分析。 无力矩理论p
8、无矩理论或薄膜理论:对于回转薄壳,认为其承压后的变形与气球充气的情况相似。其内力与应力为张力(无弯曲应力),沿壳体厚度均匀分布,呈双向应力状态,壳壁中没有弯矩及弯曲应力。具有足够的精度。 圆筒形容器受力分析 段:受压前后经线仍近段:受压前后经线仍近似保持直线,这部分只承似保持直线,这部分只承受拉应力,称为薄膜应力,受拉应力,称为薄膜应力,没有弯曲应力。没有弯曲应力。 段:由于筒体与封头段:由于筒体与封头的变形不同,其中筒体变的变形不同,其中筒体变形大于封头的变形,因此形大于封头的变形,因此在这种连接处形成了一种在这种连接处形成了一种相互约束,从而导致在附相互约束,从而导致在附近产生附加的弯曲应
9、力,近产生附加的弯曲应力,称为边缘应力。称为边缘应力。 当圆筒容器承受内压力当圆筒容器承受内压力P P作用以后,其直径要稍微增大,作用以后,其直径要稍微增大,故圆筒内的故圆筒内的“环向纤维环向纤维”要伸长,因此在筒体的纵截面要伸长,因此在筒体的纵截面上必定有应力产生,此应力称为上必定有应力产生,此应力称为环向应力环向应力,以表示;,以表示; 由于容器两端是封闭的,在承受内压后,筒体的由于容器两端是封闭的,在承受内压后,筒体的“纵向纵向纤维纤维”也要伸长,则筒体横向截面也有应力产生,此应也要伸长,则筒体横向截面也有应力产生,此应力称为力称为经向(轴向)应力经向(轴向)应力,以表示。,以表示。 圆
10、筒形容器受力分析 圆筒形容器受力分析 经向应力作用于筒体的横截面上,方向平行经向应力作用于筒体的横截面上,方向平行于筒体的轴线;于筒体的轴线; 环向应力作用于筒体的纵截面上,方向为切环向应力作用于筒体的纵截面上,方向为切线方向,每一点环向应力的方向不同。线方向,每一点环向应力的方向不同。经向应力作用面经向应力作用面环向应力作用面环向应力作用面 任意回转体薄膜应力的计算PDPz24sinzNDS2sin4D PD1 1、经向应力的计算,、经向应力的计算,同一纬线上的经向应力相等?同一纬线上的经向应力相等?Y Y方向平衡方程:方向平衡方程: 任意回转体薄膜应力的计算2sin2sinDD2P这个公式
11、是计算承受气体内压的回转体在任意纬线上经向应力的一这个公式是计算承受气体内压的回转体在任意纬线上经向应力的一般公式,称为区域平衡方程式;般公式,称为区域平衡方程式;经向应力产生在经线方向,作用在圆锥面与壳体相割所形成的锥截经向应力产生在经线方向,作用在圆锥面与壳体相割所形成的锥截面上;面上;不同纬线上各点的经向应力不同,而同一纬线上的经向应力相等不同纬线上各点的经向应力不同,而同一纬线上的经向应力相等。其中其中 是圆锥面得半顶角。是圆锥面得半顶角。 任意回转体薄膜应力的计算2 2、环向应力的计算、环向应力的计算 在同一经线上的环向应力可能是不相等的,在同一经线上的环向应力可能是不相等的,因此不
12、能用截面法求取环向应力。因此不能用截面法求取环向应力。 需通过微元体应力平衡方程求取;需通过微元体应力平衡方程求取; 两个相邻的经线平面(截面两个相邻的经线平面(截面1 1、2 2);); 两个相邻且与壳体正交的圆锥面(截面两个相邻且与壳体正交的圆锥面(截面3 3、4 4) 一、无力矩理论及基本方程 任意回转体薄膜应力的计算2 2、环向应力的计算、环向应力的计算 沿沿n n方向列力平衡方程:方向列力平衡方程:122121=2sin2sin222222ddPdl dldldldddldl 1sindldd2sindldd 任意回转体薄膜应力的计算2 2、环向应力的计算、环向应力的计算 整理得:整
13、理得:P这个公式是计算承受气体内压的回转这个公式是计算承受气体内压的回转体环向应力体环向应力的一般公式,称的一般公式,称为微体平衡方程式;为微体平衡方程式;环向应力产生在纬线方向,作用在经线平面与壳体相割所形成的环向应力产生在纬线方向,作用在经线平面与壳体相割所形成的纵向截面上纵向截面上。 薄膜理论的应用范围 回转壳体曲面在几何上是轴对称的,壳壁厚度无突变;回转壳体曲面在几何上是轴对称的,壳壁厚度无突变;曲率半径是连续变化的,材料是各向同性的;曲率半径是连续变化的,材料是各向同性的; 载荷在壳体曲面上的分布是轴对称和连续的,无突变;载荷在壳体曲面上的分布是轴对称和连续的,无突变; 壳体边界的固
14、定形式应该是自由支撑的;壳体边界的固定形式应该是自由支撑的; 壳体的边界力应当在壳体曲面的切平面内,要求在边壳体的边界力应当在壳体曲面的切平面内,要求在边界上无横剪力和弯矩。界上无横剪力和弯矩。 薄膜理论的应用1. 1. 受气体内压的圆筒形壳体受气体内压的圆筒形壳体2DRP224PRPD2PRPD环向(纬向)、经向(轴向)应力随内压、圆筒半径成正比;环向(纬向)、经向(轴向)应力随内压、圆筒半径成正比;环向应力数值上是经向应力的两倍。环向应力数值上是经向应力的两倍。 薄膜理论的应用2. 2. 受气体内压的球形壳体受气体内压的球形壳体2DR24PRPD球壳上各点的应力相同;球壳上各点的应力相同;
15、球壳的径向应力和环向应力在数值上相等;球壳的径向应力和环向应力在数值上相等;球壳的环向应力比同直径、同壁厚的圆筒小一半,这是球壳的环向应力比同直径、同壁厚的圆筒小一半,这是球壳显著的特点。球壳显著的特点。 薄膜理论的应用 cosrPr12cosPr1cos 薄膜应力随着薄膜应力随着r r的增大而增加,在锥的增大而增加,在锥底处应力最大,而在锥顶处应力为零;底处应力最大,而在锥顶处应力为零;因此如果在锥体上开孔,应开在锥顶因此如果在锥体上开孔,应开在锥顶处;处; 薄膜应力随着锥角的增大而增大。薄膜应力随着锥角的增大而增大。3. 3. 受气体内压的锥形壳体受气体内压的锥形壳体 薄膜理论的应用4.
16、4. 受气体内压的椭球壳(椭圆形封头)受气体内压的椭球壳(椭圆形封头)椭圆壳的经线为一椭圆,设其经线方程为 ,式中 a、b分别为椭圆的长短轴半径。由此方程可得第一曲率半径为:121 ( )2yy12222241()axaba b124222212()()xxaxabyb 薄膜理论的应用4. 4. 受气体内压的椭球壳(椭圆形封头)受气体内压的椭球壳(椭圆形封头)42222Paxabb44222422222Paaxabbaxab 薄膜理论的应用椭圆形封头上的应力分布椭圆形封头上的应力分布在在x=0处,处,2Paab 在在x=a处,处,2Pa2222Paab 径向应力恒为正值,且最大在径向应力恒为正
17、值,且最大在x=0处,最小值在处,最小值在x=a处;处; 薄膜理论的应用椭圆形封头上的应力分布椭圆形封头上的应力分布 环向应力在环向应力在x=0处时大于零;在处时大于零;在 x=a处却不一定:处却不一定:;时,时,即02/0222baba;时,时,即02/0222baba;时,时,即02/0222baba 薄膜理论的应用 当当a/b=2时,为标准椭圆形封头。时,为标准椭圆形封头。与半径与长半轴相等圆筒壳比较,与半径与长半轴相等圆筒壳比较,若所受内压相同,则赤道上的环向应力与圆筒壳环向应力相等,方若所受内压相同,则赤道上的环向应力与圆筒壳环向应力相等,方向相反;封头向相反;封头赤道上的经向应力与
18、圆筒体经向应力相等,方向相同。在赤道上的经向应力与圆筒体经向应力相等,方向相同。在封头极点的经向、环向应力均等于圆筒壳的环向应力。因而标准椭圆形封封头极点的经向、环向应力均等于圆筒壳的环向应力。因而标准椭圆形封头可以与同厚度的圆筒壳匹配。头可以与同厚度的圆筒壳匹配。 薄膜理论的应用5. 5. 受气体内压的碟形封头受气体内压的碟形封头obb段是半径为段是半径为R的球壳;的球壳;oac段为半径为段为半径为r的圆筒;的圆筒;oab段为连接球顶与圆筒的褶段为连接球顶与圆筒的褶边,是过渡半径为边,是过渡半径为r的圆弧段。的圆弧段。碟形封头的组成:碟形封头的组成: 薄膜理论的应用v对于球顶部分与圆筒部分,
19、分别按相应公式计算其薄膜应力;v对于褶边过渡部分:22sinsinsinP 2P11222PPPrr11112sinsinDrrrrr有:依理论:第第2 2节节 受内压厚壁壳体的受内压厚壁壳体的应力分析应力分析 一、厚壁壳体的应力特点p 厚壁回转壳体:当壳体外径/内径(K)1.2时。通常为圆筒体,在高温、高压下工作。如合成氨、合成甲醇等。p 可以许多相互套接在一起的薄壁圆筒组成。各层变形受到里层得约束和外层限制,由里及外,其约束和限制力是不一样的,由此产生的环向应力各层也是不一样的,环向应力沿厚度方向分布是不均匀的。p 由于各层的约束和限制,在径向(法向)方向也产生了应力(不能忽视),叫作“径
20、向应力”。呈三向应力状态。p 在高温下工作时,热应力沿壁厚出现应力梯度。 一、厚壁壳体的应力特点p 厚壁圆筒应力分析方法:无力矩理论不再适用,属超静定问题,应该从平衡、几何、物理三个方面列方程求解。 二、轴向应力分析p 对厚壁圆筒两端封闭承受内压时,在远离端部截面中,其轴向应力可用截面法求取。p 厚壁圆筒轴向应力沿厚度方向是均等的。 二、轴向应力分析222022220()01iiiiRRp RRppRRk 三、经向应力与环向应力分析p 由于轴对称,与r只是极坐标 r(壁厚)的函数,而与极角无关。 三、经向应力与环向应力分析 三、经向应力与环向应力分析1、平衡方程 微元体平衡,四个侧面上的应力在
21、径向(法向)投影之和等于零。()()2sin02rrrddr rdr drddrr整理并略去高阶无穷小量,且:sin22dd0rrrr 三、经向应力与环向应力分析2、几何方程,内压作用下,微元体各应变之间几何关系;微元体径向应变为:环向应变:()ruudruurdrr2(),r11(1(),rru drdurdruurruurrrrrrr 对 求导: 结合径向应变得: 三、经向应力与环向应力分析3、物理方程,根据广义虎克定律,得各应变间的关系:对r求导并代入几何方程(轴向应力在壁厚方向均匀分布):1()1()rrrEE 1+11-)()(),(rrrrrrErrr 代入几何方程,得: 三、经向
展开阅读全文