吸附等温线课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《吸附等温线课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吸附 等温线 课件
- 资源描述:
-
1、第十三章 表面物理化学13.1 表面张力及表面Gibbs自由能13.2 弯曲表面下的附加压力和蒸气压13.3 溶液的表面吸附13.4 液-液界面的性质13.5 膜13.6 液-固界面润湿作用13.7 表面活性剂及其作用13.8 固体表面的吸附13.9 气-固相表面催化反应2自然界中物质的存在状态:气气液液 固固界 面 现界 面 现象象气气 液 界液 界面面液液 液 界液 界面面固固 液 界液 界面面固固 气 界气 界面面固固 固 界固 界面面界面:所有两相的接触面界面:所有两相的接触面界面现象的本质 体相内部分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵销; 界面层的分子,一方面
2、受到体相内相同物质分子的作用,另一方面受到性质不同的另一相中物质分子的作用,其作用力未必能相互抵销,这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质比表面(specific surface area) 比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。即:ss00 AAAAmV或式中,m 和 V 分别为固体的质量和体积,As为其表面积。目前常用的测定表面积的方法有BET法和色谱法。分散度与比表面 把物质分散成细小微粒的程度称为分散度。把一定大小的物质分割得越小,则分散度越高,比表面也越大。 分散程
3、度越高,比表面越大,表面能也越高13.1 表面张力及表面Gibbs自由能表面张力表面热力学的基本公式界面张力与温度的关系溶液的表面张力与溶液浓度的关系7 若使膜维持不变,需在金属丝上加一力若使膜维持不变,需在金属丝上加一力F,其大,其大小与金属丝长度小与金属丝长度 l 成正比,比例系数成正比,比例系数 。因膜有两。因膜有两个表面,故有:个表面,故有: :引起表面收缩的单位长度上的力,:引起表面收缩的单位长度上的力,单位:单位:Nm-1。(1) 液体的表面张力即:即:/2/2FlFl 2 2FlFl 实验:实验:l表面张力sdWA 表面张力也可以这样来理解: 温度、压力和组成恒定时,可逆使表面积
4、增加dA所需要对系统作的非体积功,称为表面功。用公式表示为: 式中 为比例系数,它在数值上等于当T,p 及组成恒定的条件下,增加单位表面积时所必须对系统做的可逆非膨胀功。 测定表面张力方法很多,如毛细管上升法、滴重法、吊环法、最大压力气泡法、吊片法和静液法等 Antonoff 规则1,212纯物质的表面张力与分子的性质有关,通常是 Antonoff 发现,两种液体之间的界面张力是两种液体互相饱和时的表面张力之差,即 水因为有氢键,所以表面张力也比较大 (金属键) (离子键) (极性共价键) (非极性共价键)这个经验规律称为 Antonoff 规则表面热力学的基本公式BBBddddUT Sp V
5、n根据多组分热力学的基本公式 对需要考虑表面层的系统,由于多了一个表面相,在体积功之外,还要增加表面功,则基本公式为 B, ,UU S V nsBBBdddddUT Sp VAnsB, ,UU S V A n所以考虑了表面功的热力学基本公式为sBBBdddddUT Sp VAnsBBBdddddHT SV pAnsBBBdddddAS Tp VAn sBBBdddddGS TV pAn 从这些热力学基本公式可得BBBBss, , , , ,ssS V nS p nT V nT p nUHAGAAAA表面自由能 (surface free energy) 广义的表面自由能定义:B, ,s()S
6、V nUAB, ,s()S P nHAB, ,s()T V nAAB, ,s()T P nGA 狭义的表面自由能定义:B, ,s()T P nGA又可称为表面Gibbs自由能 表面自由能的单位:2J m13 3. 表面张力及其影响因素: (3) 温度的影响:温度升高,界面张力下降。温度的影响:温度升高,界面张力下降。 极限情况:极限情况:TTc时,时, 0。(1)与物质的本性有关)与物质的本性有关分子间相互作用力越大,分子间相互作用力越大, 越大。越大。 例:例:气液界面:气液界面: (金属键金属键) (离子键离子键) (极性键极性键) (非极性键非极性键)(2) 与接触相的性质有关。与接触相
7、的性质有关。T 气相中分子密度气相中分子密度 液相中分子距离液相中分子距离 (有例外)(有例外) 其中:0与n为经验常数。 0 01 1n nc cT /TT /T14(4)压力的影响。 Pa表面分子受力不对称的程度表面分子受力不对称的程度 b气体分子可被表面吸附,改变气体分子可被表面吸附,改变 , c气体分子溶于液相气体分子溶于液相 1atm H2O = 72.8 mN/m10atm H2O = 71.8 mN/m一般:p10atm, 1mN/m,例:界面张力与温度的关系2 3mc 6.0Vk TT Ramsay 和 Shields 提出的 与T的经验式较常用:2 3mc Vk TT Etv
8、s(约特弗斯)曾提出温度与表面张力的关系式为溶液的表面张力与溶液浓度的关系表面活性物质 加入后能使水的表面张力明显降低的溶质称为表面活性物质。 这种物质通常含有亲水的极性基团和憎水的非极性碳链或碳环有机化合物。亲水基团进入水中,憎水基团企图离开水而指向空气,在界面定向排列。 表面活性物质的表面浓度大于本体浓度,增加单位面积所需的功较纯水小。非极性成分愈大,表面活性也愈大。Traube 规则 Traube研究发现,同一种溶质在低浓度时表面张力的降低与浓度成正比 表面活性物质的浓度对溶液表面张力的影响,可以从 曲线中直接看出。 c甲酸乙酸丙酸丁酸戊酸3550650.180.360.543/(mol
9、 dm )c 不同的酸在相同的浓度时,每增加一个CH2,其表面张力降低效应平均可增加约3.2倍 稀溶液的 曲线的三种类型 c曲线 cO非离子型有机物 d0dc曲线 非表面活性物质 d0dc曲线 表面活性剂 d0dc13.2 弯曲表面上的附加压力和蒸气压 弯曲表面上的附加压力 Young-Laplace 公式弯曲表面上的蒸气压Kelvin 公式 弯曲表面上的附加压力1.在平面上 设向下的大气压力为po,向上的反作用力也为po ,附加压力ps等于零。s000ppp0pABff0p 弯曲表面上的附加压力2. 在凸面上0sppp总0pABff0sppsp 所有的点产生的合力和为 ps ,称为附加压力凸
10、面上受的总压力为: 弯曲表面上的附加压力3. 在凹面上0sppp总0pABff0sppsp 所有的点产生的合力和为 ps ,称为附加压力凹面上受的总压力为: 弯曲表面上的附加压力的结论附加压力的方向都指向曲面的圆心。 凹面上受的总压力小于平面上的压力凸面上受的总压力大于平面上的压力附加压力的大小与曲率半径有关 毛细管现象 由于附加压力而引起的液面与管外液面有高度差的现象称为毛细管现象 MN0ppp2H OHg毛细管现象 毛细管内液柱上升(或下降)的高度可近似用如下的方法计算 2sppghR 1g当12hRg1.曲率半径 R 与毛细管半径R的关系:如果曲面为球面cosRR2.2()slgpghR
11、2ghR 2 cosspghR R=RABCDYoung-Laplace 公式ABCDxy1R2Rzoy+dydxx odzs1211pRRs2pR这两个都称为 Young-Laplace 公式 弯曲表面上的蒸汽压Kelvin公式vap1vap30GG 2mm2dMGVpVpR 0r4r0lnlnppGRTRTpp 240GGr02lnpMRTpR这就是Kelvin公式弯曲表面上的蒸汽压Kelvin公式r0s pppp 设r02lnpMRTpRr001pppp 当 很小时0ppr000lnln 1pppppp代入上式,得这是Kelvin公式的简化式02pMpRTR表明液滴越小,蒸气压越大 r0
12、2lnpMRTpR02pMpRTR Kelvin公式也可以表示为两种不同曲率半径的液滴或蒸汽泡的蒸汽压之比2121211lnpMRTpRR对凸面,R 取正值,R 越小,液滴的蒸汽压越高;对凹面, R 取负值, R 越小,小蒸汽泡中的蒸汽压越低。r02lnpMRTpR02pMpRTR2121211lnpMRTpRR Kelvin公式也可以表示两种不同大小颗粒的饱和溶液浓度之比。s2121211lnlMcRTcRR 颗粒总是凸面, R 取正值, R 越小,小颗粒的饱和溶液的浓度越大,溶解度越大。13.3 溶液的表面吸附溶液的表面吸附Gibbs 吸附公式*Gibbs 吸附等温式的推导Gibbs吸附公
13、式它的物理意义是:在单位面积的表面层中,所含溶质的物质的量与具有相同数量溶剂的本体溶液中所含溶质的物质的量之差值。即:222ddaRTa 0021212(/)nn nnA 式中G2是溶剂超量为零时溶质2在表面的超额。a2是溶质2的活度,d/da2是在等温下,表面张力 随溶质活度的变化率。溶液表面吸附Gibbs吸附公式溶液貌似均匀,实际上表面相的浓度与本体不同 把物质在表面上富集的现象称为表面吸附 表面浓度与本体浓度的差别,称为表面过剩,或表面超量 溶液降低表面自由能的方法除了尽可能地缩小表面积外,还可调节不同组分在表面层中的数量Gibbs吸附公式 Gibbs用热力学方法求得定温下溶液的浓度、表
14、面张力和吸附量之间的定量关系式 222ddcRTc 1.d/dc20,增加溶质2的浓度使表面张力升高,G2为负值,是负吸附。表面层中溶质浓度低于本体浓度。非表面活性物质属于这种情况。13.4 液-液界面的性质液-液界面的铺展单分子表面膜不溶性的表面膜表面压* 曲线与表面不溶膜的结构类型a不溶性表面膜的一些应用13.4 液-液界面的性质 一种液体能否在另一种不互溶的液体上铺展,取决于两种液体本身的表面张力和两种液体之间的界面张力。液-液界面的铺展 设液体1,2和气体间的界面张力分别为1,g, 2,g和1,2 如果2,g(1,g+1,2),则液体1能在液体2上铺展, 反之,则液体1不能在液体2上铺
15、展单分子表面膜不溶性的表面膜 两亲分子具有表面活性,溶解在水中的两亲分子可以在界面上自动相对集中而形成定向的吸附层(亲水的一端在水层)并降低水的表面张力 成膜材料一般是: (1)两亲分子,带有比较大的疏水基团 (2)天然的和合成的高分子化合物表面压0式中 称为表面压,0为纯水的表面张力,为溶液的表面张力。由于0,所以液面上的浮片总是推向纯水一边。 由实验可以证实表面压的存在。在纯水表面放一很薄的浮片,在浮片的一边滴油,由于油滴在水面上铺展,会推动浮片移向纯水一边,把对单位长度浮片的推动力称为表面压。Langmuir膜天平直接测定表面压的仪器。不溶性表面膜的一些应用(1)降低水蒸发的速度 (2)
16、测定蛋白质分子的摩尔质量 RTcMc 是单位表面上蛋白质的质量 (3)使化学反应的平衡位置发生移动 测定膜电势可以推测分子在膜上是如何排列的,可以了解表面上的分布是否均匀等等。 13.5 膜L-B 膜的形成生物膜简介*自发单层分散13.5 膜L-B 膜的形成 不溶物的单分子膜可以通过简单的方法转移到固体基质上,经过多次转移仍保持其定向排列的多分子层结构。这种多层单分子膜是Langmuir和Blodgett女士首创的,故称L-B膜。 由于形成单分子膜的物质与累积(或转移)方法的不同,可以形成不同的多分子膜,如 (1)X型多分子层 (2)Y型多分子层 (3)Z型多分子层 L-B 膜的形成与类型X累
17、积Y累积Z累积生物膜简介细胞膜就是一种生物膜 膜主要由脂质、蛋白质和糖类等物质组成 细胞膜蛋白质就其功能可分为以下几类: 生物膜是一个具有特殊功能的半透膜,它的功能主要是:能量传递、物质传递、信息识别与传递 1.能识别各种物质、在一定条件下有选择地使其 通过细胞膜 2.分布在细胞膜表面,能“辩认”和接受细胞环境中特异的化学性刺激 3.属于膜内酶类,还有与免疫功能有关的物质 13.6 液-固界面润湿作用粘湿过程浸湿过程铺展过程接触角与润湿方程什么是润湿过程?润湿过程可以分为三类,即:粘湿、浸湿和铺展 滴在固体表面上的少许液体,取代了部分固气界面,产生了新的液固界面。这一过程称之为润湿过程 粘湿过
18、程 液体与固体从不接触到接触,使部分液-气界面和固-气界面转变成新的固-液界面的过程 47润湿:固体表面上原来的气体被液体取代。 接触过程的 G0。Gibbs函数降低越多,越易润湿。 1. 润湿现象润湿现象固液液固气(1)沾湿(adhesional wetting) (改变单位面积)(改变单位面积)sllssllsaaaaGWGWgggggg D=-=D=-= 自动进行自动进行粘湿功粘湿功aaaa0 0GWGW - D=- D=13.6 液-固界面润湿作用48(2)浸湿(immersional wetting)(3)铺展(spreading wetting)气固固液液气slsslsiiiiGW
19、GWgggg D=-= -D=-= -自动进行浸湿功浸湿功iiii0 0GWGW - D=- D=当小液滴的表面积与铺展后的表面积相比可忽略不计时,sllssllss sG GggggggD=+-D=+-S 0 自动铺展铺展系数:ssllsslls sSGSGgggggg= - D=-= - D=-固气固液液49沾湿 浸湿铺展,过程进行程度依次加难(4)三种润湿的比较三种润湿中的三种润湿中的 l 可测,但可测,但 s、 sl不可测量。不可测量。对单位面积的润湿过程:对单位面积的润湿过程:ssllsslla aG Ggggggg- D=-+- D=-+sslssli iG Ggggg- D=-
20、D=-ssllsslls sG Ggggggg- D=- D=-50由上式可知: 可用的大小用来判断润湿的种类和效果; 要使cos0(即90),须满足 s sl ; 杨氏方程只适用于平衡过程,不适用于Gs 0 的铺展过程。将杨氏方程将杨氏方程代入润湿方程有: 0,180 0,900,0ssllssllcoscosgggqgggq-=-=sslllssllla a(cos1)(cos1)G Gggggqggggq- D=-+=+- D=-+=+ssllsslli icoscosG Ggggqgggq- D=-=- D=-=sslllssllls s(cos1)(cos1)G Gggggqgggg
展开阅读全文