SPSS统计分析基础教程课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《SPSS统计分析基础教程课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SPSS 统计分析 基础教程 课件
- 资源描述:
-
1、统计学实践第1 1章 数据分析概述与软件入门1.1 SPSS软件概述1.1.1 SPSS简介 SPSS(Statistics Package for Social Science )for Windows是一种运行在Windows系统下的社会科学统计软件软件包。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等,具体内容包括描述统计、列联分析,总体的均值比较、相关分析、回归模型分析、聚类分析、主成份分析、时间序列分析、非参数检验等多个大类,每个类中还有多个专项统计方法。 一、功能强大(1)囊括了各种成熟的统计方法与模型,为统计分析用户提供了全方位的统计学算法,为各种研究提供了相应的
2、统计学方法。(2)提供了各种数据准备与数据整理技术。(3)自由灵活的表格功能。(4)各种常用的统计学图形。SPSS附加模块功能SPSS Advanced一般线性模型、混合线性模型、对数线性模型、生存分析等SPSS Categories对应分析、感知图、Proxscal等SPSS Complex Sample多阶段复杂抽样技术等SPSS Conjoint正交设计、联合分析等,适用于市场研究SPSS Exact Test精确P值计算、随机抽样P值计算等SPSS Maps在地图上展示数据等SPSS Missing Value Analysis缺失数据的报告与填补等SPSS RegressionLog
3、istic回归、非线性回归、Probit回归等SPSS Tables交互式创建各种表格(如堆积表、嵌套表、分层表等)SPSS TrendsArima模型、指数平滑、自回归等1.1.2 spss的安装一、启动Windows 后,把SPSS 系统安装软盘(或光盘)插入软驱(或光驱),并找到SPSS的安装程序的可执行文件Setup.exe。二、双击 Setup.exe 文件,安装程序向导将给出每一步操作的提示。在出现Welcome(欢迎)窗口后,选择Next进入下一步。三、安装程序显示Software License Agreement对话框时,选择Yes接受显示的协议条款。1.2 spss操作入门
4、1.2.1 spss软件的启动与退出单击Windows 的开始按钮,在程序菜单项SPSS for Windows中找到SPSS 16.0 for Windows并单击。1.2.2 SPSS的窗口(1)数据编辑窗口(SPSS Data Editor)Spss处理数据的工作全在此窗口进行。(2)结果管理窗口(SPSS Output viewer)此窗口用于存放分析结果。左边是目录区,右边是内容区。1.2.3 SPSS的四种运行方式一、菜单对话方式首先打开SPSS软件,然后选择菜单File Open file。然后,利用菜单Analyze Descriptive Statistics Frequen
5、cies, 二、程序方式在Syntax编辑窗口中键入以下程序:Get file=c:program filesspssemployee data.sav.Frequencies variables = jobcat/order = analysis。只需要选择菜单Run All,运行该程序也一样会出现相同的分析结果。三、Include命令方式当编写Syntax程序时,如果发现将要编写的程序语句正好是另一个Syntax文件的内容;或者发现所需要的程序语句其实是几个Syntax文件的总和是,除了可以通过“Copy”、“Paste”的方法利用资源,生产一个新的Syntax文件外,还可以利用Inclu
6、de命令。Include c:sytaxsample.sps.第2章 数据录入与数据获取spss数据分析的一般步骤:(1).spss数据准备阶段:数据编辑窗口中定义数据结构,录入和修改spss数据。(2).spss数据的加工整理阶段(3).spss数据的分析阶段(4).spss分析结果的阅读和解释2.1.1 统计软件中数据的录入格式(1)不同观测对象的数据不能在同一记录中出现,即同一观测数据应当独占一行。(2)每一个观测量指标或影响因素只能占据一列的位置,即同一指标的数量观测值都应当录入到同一个变量中去。2.1 数据格式概述数据格式概述即:一个观测占一行,一个变量占一列在录入数据时,归纳为以下
7、三步:第一步:定义变量名;第一步:指定每个变量的各种属性;第一步:录入数据。变量名不能与spss保留字相同,spss的保留字有ALL、END、BY、EQ、GE、GT、LE、LT、NE、NOT、OR、TO、WITH。2.1.2 变量属性介绍变量属性介绍一、变量的储存类型SPSS中,变量有三种的基本类型:数值型、字符型和日期型。标准数值型逗号数值型圆点数值型科学技术法数值型美元数值型用户自定义型数值型:数值型的数据是0-9的阿拉伯数字和其他符号,如美元符号、逗号或圆点组成的。字符型:字符型数据的默认显示宽度为8个字符位,系统不区分变量名中的大小写字母,并且不能进行数学运算。注意:在输入数据时不应输
8、入引号,否则双引号将会作为字符型数据的一部分。日期型:日期型数据是用来表示日期或时间的。日期型数据的显示格式有很多,SPSS以菜单方式列出日期型数据的显示格式以供用户选择。关于日期型格式的几点说明:“m”在年与日(字母y与d)之间表示月份;在时与秒(字母h与s)之间表示“分”钟。“mmm”表示要求书写英文月份单词的前三个字母组成的缩写。“ddd”三个字母d表示要求用从元月一日算起的日数表示日期。指定了日期变量的格式,不一定在输入时就使用指定的格式。可以输入用“/”或“”作分隔符的具体日期,回车后,系统将自动将输入的格式转化为指定的格式,显示在单元各种。二、变量的测量尺度在SPSS中使用Meas
9、ure属性对变量的测量尺度进行定义。(1)定类尺度(Nominal Measurement):定类尺度是对事物的类别或属性的一种测度,按照事物的某种属性对其进行分类或分组。特点:其值仅代表了事物的类别和属性,即能测度类别差异,不能比较各类之间的大小,所以各类之间没有顺序和等级。对定类尺度的变量只能计算频数和频率。在spss中,能适用定类尺度的数据可以是数值型,也可以是字符型变量。使用定类变量对事物进行分类时,必须符合穷尽原则和互斥原则。(2)定序尺度(Ordinal Measurement):定序尺度是对事物之间的等级或顺序差别的一种测度,可比较优劣或排序。特点:由于定序变量只能侧度类别之间的
10、顺序,无法测出类别之间的准确差值,即测量数值不代表绝对的数量大小,所以其测量结果只能排序,不能进行运算。(3)定距尺度(Interval Measurement):指如身高、体重、血压等连续数值型数据,也包括人数、商品件数等离散数值型数据特点:不仅能将事物区分为不同类型并进行排序,而且可能准确指出类别之间的差距是多少;定距变量通常以自然或物理单位为计量尺度,因此测量结果往往表现为数值,所以计量结果可以进行加减运算。三、变量名与变量标签值Label:定义变量名标签Value:定义变量值标签四、缺失值Spss中缺失值有用户自定义缺失值和系统缺失值两大类。在SPSS中,对字符型变量,默认的缺失值为空
11、格;对数值型变量,默认的缺失值为零。2.2 数据的直接录入2.2.1 操作界面说明标尺栏菜单栏工具栏数据输入区数据编辑区窗口标签标题栏状态栏当前数据栏显示区滚动条Variable View表用来定义和修改变量的名称、类型及其他属性,如图所示。如果输入变量名后回车,将给出变量的默认属性。如果不定义变量的属性,直接输入数据,系统将默认变量Var00001,Var00002等。Name:变量名。Type:变量类型。变量类型有8 种,最常用Numeric数值型。Width:变量所占的宽度。Decimals:小数点后位数。Label:变量标签。关于变量涵义的详细说明。Values:变量值标签。关于变量各
12、个取值的涵义说明。Missing:缺失值的处理方式。Columns:变量在Date View 中所显示的列宽(默认为8)。Align:数据对齐格式(默认为右对齐)。Measure:数据的测度方式。定距尺度、定序尺度和定类距 尺度三种。2.2.2单选题的录入单选题的录入单选题的录入可以采用字符直接录入、字符代码+值标签、数值代码+值标签三种方式。2.2.3多选题的录入一、多重二分法(Multiple Dichotomy Method) 所谓多重二分法,是在编码的时候,对应每一个选项都要定义一个变量,有几个选项就有几个变量,这些变量均为二分类,他们各自代表对一个选项的选择结果。二、多重分类法(Mu
13、ltiple Category Method) 多重分类法,也是利用多个变量对一个多选题的答案进行定义,应该用多少个变量,由被访者实际可能给出的最多答案数而定。三、多选题录入在三、多选题录入在spss中的实现中的实现2.3 数据的保存2.3.1 存为spss格式2.4.2 存为其他数据格式Excluded Variables:拒绝变量名。外部文件与当前数据的同变量,拒绝加到新工作区中。New Working Data:新工作数据变量栏。Match Case on Key Variable in sort:排序文件中按关键变量匹配记录选项。Both files provide case:由外部文
14、件和当前数据量两者提供记录。External file is keyed table:外部文件为关键表,以当前数据为基准,外部文件匹配当前数据的关键变量值,如匹配成功,外部文件的新变量值加入到当前数据的新变量中,匹配不成功则不加入。Working Data File is keyed table:当前数据为关键表。Key Variables:关键变量栏,在拒绝变量选择某变量作为关键变量。Indicate case source as variable:指示记录来源的变量选项。第4章 连续性变量的统计描述与参数估计4.1 连续变量的统计描述概述4.1.1 统计描述中的可用工具(1)各种初步汇总描
15、述方法频数、百分位数。(2)各种统计描述指标均值、标准差、四分位数间距。(3)统计表(4)统计图4.1.2 连续变量的统计描述指标体系年龄70.065.060.055.050.045.040.035.030.025.0年龄Frequency3020100Std. Dev = 10.23 Mean = 42.7N = 70.00(1)集中趋势(Central Trend):均数(Mean)中位数(Median)众数(Mode)总合(Sum)(4)其他趋势百分位数指标(Percentile)、M统计量(M-Estimators)、极端值(Outlier)。(2)离散趋势(Dispersion Tr
16、end)标准差(Std. Deviation)、方差(Variance)、全距(Range)、最小值(Minimum)、最大值(Maximum)、标准误(S.E. Mean)(3)分布特征(Distribution Tendency)偏度系数(Skewness)和峰度系数(Kurtosis)4.1.3 spss中的相应功能1、Spss的用于连续变量统计描述的过程,均集中在Descriptive Statistics子菜单中。(1)Frequencies:产生原始数据的频数表,并能计算各种百分位数。控制频数表输出范围类型的最大数目(2)Descriptive过程该过程用于一般性的统计描述,相对于
17、Frequencies过程而言,它不能绘制统计图。(3)Explore 过程该过程用于对连续性资料分布状况不清楚时的探索性分析,它可以计算许多描述统计量,给出各种统计图,并进行简单的参数估计。(4)Ratio 过程用于对两个连续性变量计算相对比指标。2、Compares means 均值比较means过程:means过程的优势在于各组的描述指标被放在一起便于相互比较,并且如果需要,可以直接输出结果,无须再次调用其它过程。4.2集中趋势的的描述指标4.2.1 算术平均算术平均(Arithmetic Mean)是最常用的描述输送距分布的集中趋势的统计良。总体均数(Population Mean)用
18、希腊字母 表示,样本均数常用 表示。 一、算术平均数的定义和性质XXaaXXXXXnXnXXXXiiiin22210二、均数的意义二、均数的意义任何一个平均数值首先是同类现象的平均数。任何一个平均数总是一个平衡点。但平均数在高度概括观测数据从而使问题简化的同时,却丢失了某些有用的信息,一方面它把各个观测数据之间的差异性掩盖了起来,另一方面由于平均数对于个别极端值反应比较灵敏,因而平均数在某些情况下可能具有一定的欺骗性。三、均数的适用范围三、均数的适用范围严格的讲平均数指示用于定距变量。但有时对于定序变量,求平均等级也可以使用平均数。4.2.2 中位数中位数(Median)是将总体各单位的标志值
19、按大小顺序排列,处于中间位置的那个标志。一、中位数的定义对于未分组的原始资料,首先必须将标志值按大小顺序。设排序结果为:则中位数就可以按下列方式确定:二、中位数的适用范围nXXXX321为偶数时当为奇数时当n2/n12/2/2/1nnnXXMXM4.2.3其他集中趋势指标一、截尾均数由于均数较易受极端之的影响,因此可以考虑将数据排序后,按照一定的比例去掉最两端的数据,只是用中部的数据来求均数。如果截尾均数河源均数相差不大,则说明数据不存在极端值,或者两侧极端值的影响正好抵消;反之,则说明数据中有极端值,此时截为均数更好地反映数据的集中趋势。常用的截尾均数有5%截尾均数,即两端各去掉5%的数据。
20、二、几何均数二、几何均数几何均数适用于原始数据分布不对称,但经过对数转换后称对称分布的资料。nXGXXXXGinnlglg1321几何均数世纪上就是对数转换后的数据lgX的算术平均数的反对数。四、调和均数它实际上是观察值X倒数之均数的倒数。三、众数(Mode)众数指的是样本数据中出现频次最多的那个数。众数适用于任何层次的变量,特别适用于单峰对称的情况,是比较两个分布是否接近首先要考虑的参数。在SPSS中,众数可以在Report子菜单和Tables子菜单的全部报表过程和制表过程中计算出来。在SPSS中,调和均数可以在Report子菜单的4个报表过程过程中计算出来。xnxxxnnxxxGnn111
21、1111121214.3 离散趋势的描述指标4.3.1全距(Range)又称为极差,是一组数据中最大值(Maximun)与最小值(Minimum)之差。极差反映的是变量分布的差异范围或离散程度,在总体中,任何两个标志值之差都不可能超过极差。极差存在两点不足:一是它仅仅取决于两个极端之的水平,不能反映其间的变量分布情况,提供的信息太少。二是它容易受个别极端值的影响,不符合稳健型的要求。minmaxXXR4.3.2 方差和标准差一、方差(Variance)和标准差(Standard Deviation)的定义将离均差平方和(Sum of Squares of Deviation from Mean
22、,SS)除以观察例数N,就得到方差:方差越大,数据分布离散程度越大。对于样本数据而言,方差的计算公式为:将方差开方,就得到标准差。对于同性质的数据来说,标准差越小,表明数据的变异程度越小,即数据越整齐,数据的分布范围越集中;标准差越大,表明数据的变异程度越大,即数据越参差不齐,分布越分散。二、方差和标准差的适用范围:方差和标准差的适用范围应当是正态分布。NXXi22122nXXSi4.3.3 百分位数、四分位数与四分位数间距分位差是对极差指标的一种改进,是从变量数列中剔除了一部分极端值后重新计算的类似于极差的指标。常用的分位差有四分位差、十分位差、百分位差。一、分位数一、分位数分位数:是一种位
23、置指标,用PX表示。一个百分位数PX将一组观测之分为两部分,理论上有x%的观测值比它小,(100-x)%的观测值比它大。四分位数(quartile)、十分位数(decile)、百分位数(percentile),他们分别是用3个点、9个点、99个点将数据4等分、10等分和100等分后各分位点上的值。二、四分位数二、四分位数四分位数:实际上是三个数值的总称,分别是P25、P50、P75分位数。很显然,中间的分位数是中位数,因此通常所说的四分位数是指第一个四分位数(下四分位数)和第三个四分位数(上四分位数)。上下四分位数的差值称为四分位数间距:QR=Q3-Q14.3.4 变异系数当需要比较两组数据离
24、散程度大小的时候,往往直接使用标准差来进行比较并不合适。这可以被分为两种情况:(1)测量尺度相差太大;(2)数据量纲不同。在以上情形中,就应当消除测量尺度和量纲的影响,而变异系数(Coefficient of Variance),它是标准差和其平均数的比率。XSCV 4.4 连续变量统计描述实例4.4.1 数据背景介绍4.4.2 使用Explore过程进行分析探索分析是对数据进行初步的观察分析,主要的分析项目有:观察数据的分布特征:可通过绘制箱图和茎叶图等图形直观地反映数据的分布形式和数据的一些规律性,包括考察数据中是否存在异常值等。 正态分布检验:检验数据是否服从正态分布。方差齐性的检验:用
25、Levene检验比较各组的方差是否相等。1、单击Analyze-Descriptive statistics-Explore,打开Explore主对话框: 一、分析操作一、分析操作(3)在Display栏中选择输出项,依次是Both选择项,输出图形与描述统计量(系统默认),只输出描述统计量和只输出图形。本例中选择默认项。(1)从左侧的变量列表中选出变量”身高”,送入Dependent List栏。(2)选择”性别”作为 因 子 变 量 , 送 入Factor List栏。有了因子变量,SPSS会把所有的观测个体按照因子变量的取值分成若干各组 , 再 分 组 考 察Dependent List中
展开阅读全文